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2017

2042 2067

I Requirements:

1. Humanity cannot decrypt in < 25 years
2. Jules can decrypt in 25 years

∗I shamelessly ripped this example off Tal Moran’s Crypto’11 talk.
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Attempt 1: Use a Trusted Third Party

2017 2042

I Problem: Franke has to completely trust Miele
I Dishwashers break down
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Encryption

I Franke and Jules share a key

I Encrypt(message,key)=code

I Decrypt(code,key)=message

I Key size: If key is n bits then it takes ≈ 2n operations on one
computer to break the encryption

I E.g., assuming 230 operations/sec
I n = 60: ≈ 25 years; n = 128: ≈ 232 years
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Encryption...

2017 2042 2067

Start breaking 60 and 128 bit keys
60-bit key broken

Apocalypse 232

128-bit key broken
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Attempt 2: Use 60-bit Encryption...

I Brute force is embarrassingly parallel: with n computers it
takes 1/n-th of the time taken by one computer

I By using all 5bn cell phones to decrypt, it takes < 1 second!

I Cannot be solved by increasing key-length: gap is inherent
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Time-Lock Puzzles

I “Encryption” that is inherently sequential:

“Solving the puzzle should be like having a baby: two women
can’t have a baby in 4.5 months.” [Rivest, Shamir and Wagner]

I Time-Lock(message,t)=puzzle

I Unlock(puzzle)=message

10 / 18



Time-Lock Puzzles

I “Encryption” that is inherently sequential:

“Solving the puzzle should be like having a baby: two women
can’t have a baby in 4.5 months.” [Rivest, Shamir and Wagner]

I Time-Lock(message,t)=puzzle

I Unlock(puzzle)=message

10 / 18



Time-Lock Puzzles

I “Encryption” that is inherently sequential:

“Solving the puzzle should be like having a baby: two women
can’t have a baby in 4.5 months.” [Rivest, Shamir and Wagner]

I Time-Lock(message,t)=puzzle

I Unlock(puzzle)=message

10 / 18



Time-Lock Puzzles

I “Encryption” that is inherently sequential:

“Solving the puzzle should be like having a baby: two women
can’t have a baby in 4.5 months.” [Rivest, Shamir and Wagner]

I Time-Lock(message,t)=puzzle

I Unlock(puzzle)=message

10 / 18



Time-Lock Puzzles

I “Encryption” that is inherently sequential:

“Solving the puzzle should be like having a baby: two women
can’t have a baby in 4.5 months.” [Rivest, Shamir and Wagner]

I Time-Lock(message,t)=puzzle

I Unlock(puzzle)=message

10 / 18



Time-Lock Puzzles

I “Encryption” that is inherently sequential:

“Solving the puzzle should be like having a baby: two women
can’t have a baby in 4.5 months.” [Rivest, Shamir and Wagner]

I Time-Lock(message,t)=puzzle

I Unlock(puzzle)=message

10 / 18



Time-Lock Puzzles...

I Requirements:

1. Humanity cannot solve in < 25 years
2. Jules can solve in 25 years

3. Franke can generate puzzle in � 25 years (“Shortcut”)

I Slightly more formally, a time-lock puzzle with parameter t

1. Even with unbounded parallelism, takes t time to solve
2. Anyone an solve the puzzle in t time
3. Puzzle can be generated in time ≈ log t (“Shortcut”)
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Constructing Time-Lock Puzzles

I Assumption 1: Exponentiation is inherently sequential in
certain settings

I Best known algorithm for computing 22
t

requires t squarings

2 22 22
2 · · · 22

t−1
22

t
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Modulo Counting

I Counting modulo (%) a number: take the remainder you get
when divided by the number

I For example let’s consider 13
I Reducing modulo 13:

21 = 13× 1 + 8

= 8%13

I Addition modulo 13:

7 + 8 = 15

= 13× 1 + 2

= 2%13

I Multiplication modulo 13:

6× 8 = 48

= 13× 3 + 9

= 9%13
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Attempt 1: Exponentiation modulo prime p

I Setting: Counting modulo large prime p (i.e., group Z∗
p)

I Time-Lock(message, t) := (message + 22
t
%p, t, p)

I Näıve: 2%p → 22%p → 222%p → . . . 22t %p
I Shortcut (using log(t) squarings):

1. exp = 2t%(p − 1) (where p − 1 is the group order)
2. 2exp%p

I Unlock(puzzle, t, p):

1. 22t %p using t squarings
2. puzzle − 22t %p

I Problem: Anyone can use shortcut as (p−1) is publicly known

I Solution: Hide the shortcut!
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I Näıve: 2%p → 22%p → 222%p → . . . 22t %p

I Shortcut (using log(t) squarings):

1. exp = 2t%(p − 1) (where p − 1 is the group order)
2. 2exp%p

I Unlock(puzzle, t, p):

1. 22t %p using t squarings
2. puzzle − 22t %p

I Problem: Anyone can use shortcut as (p−1) is publicly known

I Solution: Hide the shortcut!

15 / 18



Attempt 1: Exponentiation modulo prime p

I Setting: Counting modulo large prime p (i.e., group Z∗
p)

I Time-Lock(message, t) := (message + 22
t
%p, t, p)
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I Näıve: 2%p → 22%p → 222%p → . . . 22t %p
I Shortcut (using log(t) squarings):

1. exp = 2t%(p − 1) (where p − 1 is the group order)
2. 2exp%p

I Unlock(puzzle, t, p):

1. 22t %p using t squarings
2. puzzle − 22t %p

I Problem: Anyone can use shortcut as (p−1) is publicly known

I Solution: Hide the shortcut!

15 / 18



Attempt 1: Exponentiation modulo prime p

I Setting: Counting modulo large prime p (i.e., group Z∗
p)

I Time-Lock(message, t) := (message + 22
t
%p, t, p)
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Attempt 2: Exponentiation in composite modulus

I Setting: Counting modulo N = p × q, where p and q are
large primes (i.e., RSA group Z×

N)

I Time-Lock(message, t) := (message + 22
t
%N, t,N)

I Shortcut (using log(t) squarings):

1. exp = 2t%(p − 1)(q − 1) ((p − 1)(q − 1) is the group order)
2. 2exp%N

I Unlock(puzzle, t):

1. 22t %N using t squarings
2. puzzle − 22t %N

I Assumption 2: Given just N, finding the shortcut is “hard”
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Proof of Time

I Time-lock puzzle is a proof that t amount of time has passed
I Problem: Not publicly verifiable

I Proof of time: TLP with efficient public verification

I Application in blockchain design: replace “proof of work” with
“proof of space”+proof of time

I More environment-friendly cryptocurrencies (e.g., Chia)
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Questions?
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