Time-Lock Puzzles

Chethan Kamath, Pietrzak Group

Think and Drink, June 8, 2018

Franke and Co

- Protagonists

Franke

Miele

Jules

Franke and Co

- Protagonists

Franke

드N

Miele

Jules

- Antagonists: Us

Motivation*

*I shamelessly ripped this example off Tal Moran's Crypto'11 talk.

Motivation*

*I shamelessly ripped this example off Tal Moran's Crypto'11 talk.

Motivation*

[^0]
Motivation*

[^1]
Motivation*

[^2]
Motivation*

- Requirements:

1. Humanity cannot decrypt in <25 years
[^3]
Motivation*

- Requirements:

1. Humanity cannot decrypt in <25 years
2. Jules can decrypt in 25 years
[^4]
Attempt 1: Use a Trusted Third Party

Attempt 1: Use a Trusted Third Party

- Problem: Franke has to completely trust Miele
- Dishwashers break down

Encryption

Encryption

- Franke and Jules share a key

Encryption

- Franke and Jules share a key

Encryption

- Franke and Jules share a key
- Encrypt(message,key)=code

Encryption

- Franke and Jules share a key
- Encrypt(message,key)=code

Encryption

- Franke and Jules share a key
- Encrypt(message,key)=code

Encryption

- Franke and Jules share a key
- Encrypt(message,key)=code
- Decrypt(code,key)=message

Encryption

- Franke and Jules share a key
- Encrypt(message,key)=code
- Decrypt(code,key)=message
- Key size: If key is n bits then it takes $\approx 2^{n}$ operations on one computer to break the encryption

Encryption

- Franke and Jules share a key
- Encrypt(message,key)=code
- Decrypt(code,key)=message
- Key size: If key is n bits then it takes $\approx 2^{n}$ operations on one computer to break the encryption
- E.g., assuming 2^{30} operations/sec
- $n=60: \approx 25$ years; $n=128: \approx 2^{32}$ years

Encryption...

Encryption...

Start breaking 60 and 128 bit keys

Encryption...

Encryption...

Attempt 2: Use 60-bit Encryption

Jules can decrypt in 25 years

Attempt 2: Use 60-bit Encryption

\times Humanity cannot decrypt in <25 years Jules can decrypt in 25 years

Attempt 2: Use 60-bit Encryption...

- Brute force is embarrassingly parallel: with n computers it takes $1 / n$-th of the time taken by one computer

Attempt 2: Use 60-bit Encryption...

- Brute force is embarrassingly parallel: with n computers it takes $1 / n$-th of the time taken by one computer
- By using all 5bn cell phones to decrypt, it takes <1 second!

Attempt 2: Use 60-bit Encryption...

- Brute force is embarrassingly parallel: with n computers it takes $1 / n$-th of the time taken by one computer
- By using all 5bn cell phones to decrypt, it takes <1 second!
- Cannot be solved by increasing key-length: gap is inherent

Time-Lock Puzzles

- "Encryption" that is inherently sequential:
"Solving the puzzle should be like having a baby: two women can't have a baby in 4.5 months." [Rivest, Shamir and Wagner]

Time-Lock Puzzles

- "Encryption" that is inherently sequential:
"Solving the puzzle should be like having a baby: two women can't have a baby in 4.5 months." [Rivest, Shamir and Wagner]

Time-Lock Puzzles

- "Encryption" that is inherently sequential:
"Solving the puzzle should be like having a baby: two women can't have a baby in 4.5 months." [Rivest, Shamir and Wagner]

- Time-Lock(message, t)=puzzle

Time-Lock Puzzles

- "Encryption" that is inherently sequential:
"Solving the puzzle should be like having a baby: two women can't have a baby in 4.5 months." [Rivest, Shamir and Wagner]

- Time-Lock(message, t)=puzzle

Time-Lock Puzzles

- "Encryption" that is inherently sequential:
"Solving the puzzle should be like having a baby: two women can't have a baby in 4.5 months." [Rivest, Shamir and Wagner]

- Time-Lock(message,t)=puzzle

Time-Lock Puzzles

- "Encryption" that is inherently sequential:
"Solving the puzzle should be like having a baby: two women can't have a baby in 4.5 months." [Rivest, Shamir and Wagner]

- Time-Lock(message,t)=puzzle
- Unlock(puzzle)=message

Time-Lock Puzzles...

- Requirements:

1. Humanity cannot solve in <25 years
2. Jules can solve in 25 years

Time-Lock Puzzles...

- Requirements:

1. Humanity cannot solve in <25 years
2. Jules can solve in 25 years
3. Franke can generate puzzle in $\ll 25$ years ("Shortcut")

Time-Lock Puzzles...

- Requirements:

1. Humanity cannot solve in <25 years
2. Jules can solve in 25 years
3. Franke can generate puzzle in $\ll 25$ years ("Shortcut")

- Slightly more formally, a time-lock puzzle with parameter t

1. Even with unbounded parallelism, takes t time to solve
2. Anyone an solve the puzzle in t time
3. Puzzle can be generated in time $\approx \log t$ ("Shortcut")

Attempt 3: Use Time-Lock Puzzles

Constructing Time-Lock Puzzles

- Assumption 1: Exponentiation is inherently sequential in certain settings
- Best known algorithm for computing $2^{2^{t}}$ requires t squarings

$$
2 \rightarrow 2^{2} \rightarrow 2^{2^{2}} \quad \cdots \quad 2^{2^{2-1}} \longrightarrow 2^{2^{t}}
$$

Modulo Counting

- Counting modulo (\%) a number: take the remainder you get when divided by the number

Modulo Counting

- Counting modulo (\%) a number: take the remainder you get when divided by the number
- For example let's consider 13
- Reducing modulo 13 :

$$
\begin{aligned}
21 & =13 \times 1+8 \\
& =8 \% 13
\end{aligned}
$$

Modulo Counting

- Counting modulo (\%) a number: take the remainder you get when divided by the number
- For example let's consider 13
- Reducing modulo 13 :

$$
\begin{aligned}
21 & =13 \times 1+8 \\
& =8 \% 13
\end{aligned}
$$

- Addition modulo 13 :

$$
\begin{aligned}
7+8 & =15 \\
& =13 \times 1+2 \\
& =2 \% 13
\end{aligned}
$$

Modulo Counting

- Counting modulo (\%) a number: take the remainder you get when divided by the number
- For example let's consider 13
- Reducing modulo 13 :

$$
\begin{aligned}
21 & =13 \times 1+8 \\
& =8 \% 13
\end{aligned}
$$

- Addition modulo 13 :

$$
\begin{aligned}
7+8 & =15 \\
& =13 \times 1+2 \\
& =2 \% 13
\end{aligned}
$$

- Multiplication modulo 13:

$$
\begin{aligned}
6 \times 8 & =48 \\
& =13 \times 3+9 \\
& =9 \% 13
\end{aligned}
$$

Attempt 1: Exponentiation modulo prime p

- Setting: Counting modulo large prime p (i.e., group \mathbb{Z}_{p}^{*})

Attempt 1: Exponentiation modulo prime p

- Setting: Counting modulo large prime p (i.e., group \mathbb{Z}_{p}^{*})
- Time-Lock(message, t) $:=\left(\right.$ message $\left.+2^{2^{t}} \% p, t, p\right)$

Attempt 1: Exponentiation modulo prime p

- Setting: Counting modulo large prime p (i.e., group \mathbb{Z}_{p}^{*})
- Time-Lock(message, t) $:=\left(\right.$ message $\left.+2^{2^{t}} \% p, t, p\right)$
- Naïve: $2 \% p \rightarrow 2^{2} \% p \rightarrow 2^{2^{2}} \% p \rightarrow \ldots 2^{2^{t}} \% p$

Attempt 1: Exponentiation modulo prime p

- Setting: Counting modulo large prime p (i.e., group \mathbb{Z}_{p}^{*})
- Time-Lock(message, t) $:=\left(\right.$ message $\left.+2^{2^{t}} \% p, t, p\right)$
- Naïve: $2 \% p \rightarrow 2^{2} \% p \rightarrow 2^{2^{2}} \% p \rightarrow \ldots 2^{2^{t}} \% p$
- Shortcut (using $\log (t)$ squarings):

1. $\exp =2^{t} \%(p-1)$ (where $p-1$ is the group order)

Attempt 1: Exponentiation modulo prime p

- Setting: Counting modulo large prime p (i.e., group \mathbb{Z}_{p}^{*})
- Time-Lock(message, t) $:=\left(\right.$ message $\left.+2^{2^{t}} \% p, t, p\right)$
- Naïve: $2 \% p \rightarrow 2^{2} \% p \rightarrow 2^{2^{2}} \% p \rightarrow \ldots 2^{2^{t}} \% p$
- Shortcut (using $\log (t)$ squarings):

1. $\exp =2^{t} \%(p-1)$ (where $p-1$ is the group order)
2. $2^{\text {exp } \%} \%$

Attempt 1: Exponentiation modulo prime p

- Setting: Counting modulo large prime p (i.e., group \mathbb{Z}_{p}^{*})
- Time-Lock(message, t) $:=\left(\right.$ message $\left.+2^{2^{t}} \% p, t, p\right)$
- Naïve: $2 \% p \rightarrow 2^{2} \% p \rightarrow 2^{2^{2}} \% p \rightarrow \ldots 2^{2^{t}} \% p$
- Shortcut (using $\log (t)$ squarings):

1. $\exp =2^{t} \%(p-1)$ (where $p-1$ is the group order)
2. $2^{\exp } \% p$

- Unlock(puzzle, $t, p)$:

Attempt 1: Exponentiation modulo prime p

- Setting: Counting modulo large prime p (i.e., group \mathbb{Z}_{p}^{*})
- Time-Lock(message, t) $:=\left(\right.$ message $\left.+2^{2^{t}} \% p, t, p\right)$
- Naïve: $2 \% p \rightarrow 2^{2} \% p \rightarrow 2^{2^{2}} \% p \rightarrow \ldots 2^{2^{t}} \% p$
- Shortcut (using $\log (t)$ squarings):

1. $\exp =2^{t} \%(p-1)$ (where $p-1$ is the group order)
2. $2^{\exp \%} \% p$

- Unlock (puzzle, t, p):

1. $2^{2^{t}} \% p$ using t squarings

Attempt 1: Exponentiation modulo prime p

- Setting: Counting modulo large prime p (i.e., group \mathbb{Z}_{p}^{*})
- Time-Lock(message, t) $:=\left(\right.$ message $\left.+2^{2^{t}} \% p, t, p\right)$
- Naïve: $2 \% p \rightarrow 2^{2} \% p \rightarrow 2^{2^{2}} \% p \rightarrow \ldots 2^{2^{t}} \% p$
- Shortcut (using $\log (t)$ squarings):

1. $\exp =2^{t} \%(p-1)$ (where $p-1$ is the group order)
2. $2^{\exp \%} \% p$

- Unlock (puzzle, t, p):

1. $2^{2^{t}} \% p$ using t squarings
2. puzzle $-2^{2^{t}} \% p$

Attempt 1: Exponentiation modulo prime p

- Setting: Counting modulo large prime p (i.e., group \mathbb{Z}_{p}^{*})
- Time-Lock(message, t) $:=\left(\right.$ message $\left.+2^{2^{t}} \% p, t, p\right)$
- Naïve: $2 \% p \rightarrow 2^{2} \% p \rightarrow 2^{2^{2}} \% p \rightarrow \ldots 2^{2^{t}} \% p$
- Shortcut (using $\log (t)$ squarings):

1. $\exp =2^{t} \%(p-1)$ (where $p-1$ is the group order)
2. $2^{\exp \%} \% p$

- Unlock (puzzle, t, p):

1. $2^{2^{t}} \% p$ using t squarings
2. puzzle $-2^{2^{t}} \% p$

- Problem: Anyone can use shortcut as $(p-1)$ is publicly known

Attempt 1: Exponentiation modulo prime p

- Setting: Counting modulo large prime p (i.e., group \mathbb{Z}_{p}^{*})
- Time-Lock(message, t) $:=\left(\right.$ message $\left.+2^{2^{t}} \% p, t, p\right)$
- Naïve: $2 \% p \rightarrow 2^{2} \% p \rightarrow 2^{2^{2}} \% p \rightarrow \ldots 2^{2^{t}} \% p$
- Shortcut (using $\log (t)$ squarings):

1. $\exp =2^{t} \%(p-1)$ (where $p-1$ is the group order)
2. $2^{\exp p} \% p$

- Unlock (puzzle, t, p):

1. $2^{2^{t}} \% p$ using t squarings
2. puzzle $-2^{2^{t}} \% p$

- Problem: Anyone can use shortcut as $(p-1)$ is publicly known
- Solution: Hide the shortcut!

Attempt 2: Exponentiation in composite modulus

- Setting: Counting modulo $N=p \times q$, where p and q are large primes (i.e., RSA group \mathbb{Z}_{N}^{\times})

Attempt 2: Exponentiation in composite modulus

- Setting: Counting modulo $N=p \times q$, where p and q are large primes (i.e., RSA group \mathbb{Z}_{N}^{\times})
- Time-Lock(message, t) $:=\left(\right.$ message $\left.+2^{2^{t}} \% N, t, N\right)$
- Shortcut (using $\log (t)$ squarings):

1. $\exp =2^{t} \%(p-1)(q-1)((p-1)(q-1)$ is the group order $)$
2. $2^{\exp } \% \mathrm{~N}$

- Unlock(puzzle, t):

1. $2^{2^{t}} \% N$ using t squarings
2. puzzle $-2^{2^{t}} \% N$

Attempt 2: Exponentiation in composite modulus

- Setting: Counting modulo $N=p \times q$, where p and q are large primes (i.e., RSA group \mathbb{Z}_{N}^{\times})
- Time-Lock(message, t) $:=\left(\right.$ message $\left.+2^{2^{t}} \% N, t, N\right)$
- Shortcut (using $\log (t)$ squarings):

1. $\exp =2^{t} \%(p-1)(q-1)((p-1)(q-1)$ is the group order $)$
2. $2^{\exp } \% \mathrm{~N}$

- Unlock(puzzle, t):

1. $2^{2^{t}} \% N$ using t squarings
2. puzzle $-2^{2^{t}} \% N$

- Assumption 2: Given just N, finding the shortcut is "hard"

Proof of Time

- Time-lock puzzle is a proof that t amount of time has passed
- Problem: Not publicly verifiable

Proof of Time

- Time-lock puzzle is a proof that t amount of time has passed
- Problem: Not publicly verifiable
- Proof of time: TLP with efficient public verification

Proof of Time

- Time-lock puzzle is a proof that t amount of time has passed
- Problem: Not publicly verifiable
- Proof of time: TLP with efficient public verification
- Application in blockchain design: replace "proof of work" with "proof of space" + proof of time
- More environment-friendly cryptocurrencies (e.g., Chia)
chia

Questions?

[^0]: *I shamelessly ripped this example off Tal Moran's Crypto'11 talk.

[^1]: *I shamelessly ripped this example off Tal Moran's Crypto'11 talk.

[^2]: *I shamelessly ripped this example off Tal Moran's Crypto'11 talk.

[^3]: *I shamelessly ripped this example off Tal Moran's Crypto'11 talk.

[^4]: *I shamelessly ripped this example off Tal Moran's Crypto'11 talk.

