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Schnorr Signature - Salient Features

I Derived from Schnorr identification scheme through
Fiat-Shamir transformation

I Based on the DLP

I Security argued using oracle replay attacks

I Uses the random oracle heuristic
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Security Proofs

Proof through Contradiction

I Consider a protocol P based on a hard problem Π

I Aim: Π is hard =⇒ P is not breakable ≡
P is breakable =⇒ Π is not hard

B
Π

C
Π P

A
P

I Since Π is assumed to be hard, this leads to a contradiction.
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Security Model

I Lays down the schema to be followed for giving security proofs

I Described using a game between a challenger C and an
adversary A

C
P

A
P

I C simulates the protocol environment for A
I A wins the game if it solves the challenge given by C
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Random Oracles

I Heuristic aimed at simplifying security proofs of protocols
involving hash functions.

I In proofs, the hash function modelled as a truly random
function under the control of the challenger.

I A given oracle access to this function.

P
H

C
H

P
A

P

I Proofs without random oracles preferred.
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PKS and its Security Models

Definition – Public-Key Signature
An PKS scheme consists of three PPT algorithms {K,S ,V} -

I Key Generation:
I Used by the user to generate the public-private key pair (pk, sk)
I pk is published and the sk kept secret
I Run on a security parameter κ

(pk, sk)
$←− K(κ)

I Signing:
I Used by the user to generate signature on some message m
I The secret key sk used for signing

σ
$←− S (sk,m)

I Verification:
I Outputs 1 if σ is a valid signature on m; else, outputs 0

result← V (σ,m, pk)
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Definition – EU-NMA

I Existential unforgeability under no-message attack

I Challenger C generates key-pair (pk, sk).

I Forgery – Adversary A wins if σ̂ is a valid signature on m̂.

I Adversary’s advantage in the game:

Pr
[
1← V (σ̂, m̂, pk) | (sk, pk)

$←− K(κ); (σ̂, m̂)
$←− A(pk)

]
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PKS and its Security Models

Definition – EU-CMA

I Existential unforgeability under chosen-message attack

I Challenger C generates key-pair (pk, sk).

I Signature Queries – Access to a signing oracle O
I Forgery – Adversary A wins if

I σ̂ is a valid signature on m̂.
I A has not made a signature query on m̂.

C
O

EU-CMA A
pk

(σ̂, m̂)

I Adversary’s advantage in the game:

Pr
[
1← V (σ̂, m̂, pk) | (sk, pk)

$←− K(κ); (σ̂, m̂)
$←− AO(pk)

]
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Hardness Assumption: Discrete-log Assumption
Discrete-log problem for a group G = 〈g〉 and | G |= p

C
DLP

A
DLP

(G, g, p, gα)

α

Definition
The DLP in G is to find α given gα, where α ∈R Zp. An adversary
A has advantage ε in solving the DLP if

Pr
[
α ∈R Zp;α′ ← A(G, p, g , gα) | α′ = α

]
≥ ε.

The (ε, t)-discrete-log assumption holds in G if no adversary has
advantage at least ε in solving the DLP in time at most t.
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Schnorr Signature

The Setting.

1. We work in group G = 〈g〉 of prime order p.
2. A hash function H is used.

H : {0, 1}∗ → Zp

Key Generation. K(κ):

1. Select z ∈R Zp as the secret key sk
2. Set Z := g z as the public key pk

Signing. S (m, sk):

1. Let sk = z . Select r ∈R Zp, set R := g r and c := H(m,R).
2. The signature on m is σ := (y ,R) where

y := r + zc
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The Construction

Schnorr Signature

Verification. V (σ,m):

1. Let σ = (y ,R) and c = H(m,R).
2. σ is valid if

g y = RZ c
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Security of Schnorr Signature: An Intuition

I Consider an adversary A with ability to launch
chosen-message attack on the Schnorr signature.

I Let {σ1, . . . , σn} with σi = (ri + zci ,Ri ) on mi be the
signatures that A receives.


1 0 · · · 0 c0
0 1 · · · 0 c1
...

...
. . .

...
...

0 0 · · · 1 cn

×


r1
r2
...

rn
z

 =


y1
y2
...

rn
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Security of Schnorr Signature: An Intuition

I However, A can solve for x if it gets two equations containing
the same r but different c , i.e.

y1 = r + zc1 and y2 = r + zc2

implies

z =
y1 − y2
c1 − c2
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The Oracle Replay Attack
I Recall the random oracle methodology.

C
H

P
A

PQi

si

P
H

QI+1 Qγ Run 0

Q1 Q2 QI
s1

sI

sγ
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The Oracle Replay Attack
I Recall the random oracle methodology.

C
H

P
A

PQi

si

P
H

QI+1 Qγ Run 0

Q1 Q2 QI

Q
′

I+1 Q
′

γ Run 1

s1

sI

s
′

I

sγ

s
′

γ

I The simulation carried out during Run 1 (from query Qi ) using
a different random function
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Security of Schnorr Signature in EU-NMA

I Consider the simpler model of existential unforgeability under
no-message attack (EU-NMA)

I C gives the challenge public key pk := (G, g , p, gα) to A
I A not allowed signature queries; forges on a message m̂
I A also allowed access to an H-oracle {Q1, . . . , Qγ}

B
DLP

C
DLP SS

H

A
SS

∆ = (G, g , p, gα)

α

pk := ∆

EU-NMA

σ̂ = (ŷ , R̂)
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Security of Schnorr Signature in EU-NMA

B
DLP

C
DLP SS

H

A
SS

∆ = (G, g , p, gα)

α

pk := ∆

EU-NMA

σ̂ = (ŷ , R̂)

I Q0I : H(m̂0, R̂0) = c0

Q0I+1 Q0γ σ̂0 = (ŷ0 = r̂0 + αc0, R̂0)

Q01 Q02 Q0I

s01

s0I

s0γ
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Security of Schnorr Signature in EU-NMA

B
DLP

C
DLP SS

H

A
SS

∆ = (G, g , p, gα)

α

pk := ∆

EU-NMA

σ̂ = (ŷ , R̂)

I Q0I : H(m̂0, R̂0) = c0 and Q
φ
J : H(m̂1, R̂1) = c1

Q0I+1 Q0γ σ̂0 = (ŷ0 = r̂0 + αc0, R̂0)

Q01 Q02 Q0I

Q1I+1 Q1γ σ̂1 = (ŷ1 = r̂1 + αc1, R̂1)

s01

s0I

s1I

s0γ
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α
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σ̂ = (ŷ , R̂)
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Security in the Full Model

B
DLP

C
DLP SS

O ,H

A
SS

∆ = (G, g , p, gα)

α

pk := ∆

EU-CMA

σ̂ = (ŷ , R̂)

Signature query. O(m)

I Signature for m is of form σ = (r + αc , g r ), where
c = H(m, g r ).

I But, we don’t know α!
I Problem solved using Boneh-Boyen algebraic technique:

I Select c , s ∈R Zp and set r = −αc + s.
I Program the random oracle to set c = H(m, g r ) and send

(s, g r ) as the signature.
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Forking Algorithm

I The oracle replay attack formalised through the forking
algorithm

Algorithm 1 FY (x)

Pick coins ρ for Y at random

s01 , . . . , s
0
γ ∈R S; (I0, σ0)

$←− Y (x , s01 , . . . , s
0
γ ; ρ) [Run 0]

s1I0 , . . . , s
1
γ ∈R S; (I1, σ1)

$←− Y (x , s01 , . . . , s
0
I0−1, s

1
I0
, . . . , s1γ ; ρ) [Run 1]

if (I0 > 0 ∧ I1 = I0 ∧ s1I0 6= s0I0) then
return (1, σ0, σ1)

else
return (0,⊥,⊥)

end if
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The Forking Lemma
I The forking lemma gives a lower bound on the success

probability of the oracle replay attack (frk) in terms of the
success probability of the adversary during a particular run
(acc).

I To be precise,

frk ≥ acc

(
acc

γ
− 1

p

)

QI+1 Qγ Run 0

Q1 Q2 QI

Q
′

I+1 Q
′

γ Run 1

s1

sI

s
′

I

sγ

s
′

γ
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Theorem

Theorem
If A is an adversary with advantage ε against the Schnorr
signature scheme, in the setting (G, g , p), then we can construct
an algorithm B that solves the DLP with advantage

ε′ ≥ ε
(
ε

γ
− 1

p

)
provided H is modelled as a random oracle with an upper bound of
qH queries.
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THANK YOU!
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