Schnorr Signature.

October 31, 2012

Table of contents

Salient Features

Preliminaries

Security Proofs Random Oracle Heuristic PKS and its Security Models Hardness Assumption

Schnorr Signature

The Construction Oracle Replay Attack Security Proof Forking Lemma

Schnorr Signature - Salient Features

- Derived from Schnorr identification scheme through Fiat-Shamir transformation
- Based on the DLP
- Security argued using oracle replay attacks
- Uses the random oracle heuristic

- Preliminaries

PRELIMINARIES

Security Proofs

Proof through Contradiction

• Consider a protocol $\mathfrak P$ based on a hard problem Π

Security Proofs

Proof through Contradiction

- \blacktriangleright Consider a protocol $\mathfrak P$ based on a hard problem Π
- Aim: Π is hard $\implies \mathfrak{P}$ is not breakable

Security Proofs

Proof through Contradiction

- \blacktriangleright Consider a protocol $\mathfrak P$ based on a hard problem Π
- Aim: Π is hard $\implies \mathfrak{P}$ is not breakable \equiv

 \mathfrak{P} is breakable $\implies \Pi$ is not hard

Security Proofs

Proof through Contradiction

- \blacktriangleright Consider a protocol ${\mathfrak P}$ based on a hard problem Π
- Aim: Π is hard $\implies \mathfrak{P}$ is not breakable \equiv

 \mathfrak{P} is breakable $\implies \Pi$ is not hard

Since Π is assumed to be hard, this leads to a *contradiction*.

Security Proofs

Security Model

- Lays down the schema to be followed for giving security proofs
- Described using a game between a challenger C and an adversary A

- \blacktriangleright ${\cal C}$ simulates the protocol environment for ${\cal A}$
- \mathcal{A} wins the game if it solves the challenge given by \mathcal{C}

Random Oracle Heuristic

Random Oracles

- Heuristic aimed at simplifying security proofs of protocols involving hash functions.
- In proofs, the hash function modelled as a *truly random function* under the *control* of the challenger.
- \mathcal{A} given oracle access to this function.

Random Oracle Heuristic

Random Oracles

- Heuristic aimed at simplifying security proofs of protocols involving hash functions.
- In proofs, the hash function modelled as a *truly random function* under the *control* of the challenger.
- \mathcal{A} given oracle access to this function.

└─ Random Oracle Heuristic

Random Oracles

- Heuristic aimed at simplifying security proofs of protocols involving hash functions.
- In proofs, the hash function modelled as a *truly random function* under the *control* of the challenger.
- \mathcal{A} given oracle access to this function.

└─ Random Oracle Heuristic

Random Oracles

- Heuristic aimed at simplifying security proofs of protocols involving hash functions.
- In proofs, the hash function modelled as a *truly random function* under the *control* of the challenger.
- \mathcal{A} given oracle access to this function.

Proofs without random oracles preferred.

– Preliminaries

PKS and its Security Models

PUBLIC-KEY SIGNATURES AND ITS SECURITY MODELS

- Preliminaries

└─PKS and its Security Models

Definition – Public-Key Signature

An PKS scheme consists of three PPT algorithms $\{\mathcal{K},\mathcal{S},\mathcal{V}\}$ -

Preliminaries

└─ PKS and its Security Models

Definition – Public-Key Signature

An PKS scheme consists of three PPT algorithms $\{\mathcal{K},\mathcal{S},\mathcal{V}\}$ -

- Key Generation:
 - Used by the user to generate the public-private key pair (pk, sk)
 - pk is published and the sk kept secret
 - Run on a security parameter κ

$$(\mathsf{pk},\mathsf{sk}) \xleftarrow{\$} \mathcal{K}(\kappa)$$

Preliminaries

└─ PKS and its Security Models

Definition – Public-Key Signature

An PKS scheme consists of three PPT algorithms $\{\mathcal{K},\mathcal{S},\mathcal{V}\}$ -

- Key Generation:
 - Used by the user to generate the public-private key pair (pk, sk)
 - pk is published and the sk kept secret
 - Run on a security parameter κ

$$(\mathsf{pk},\mathsf{sk}) \xleftarrow{\$} \mathcal{K}(\kappa)$$

Signing:

- Used by the user to generate signature on some message m
- The secret key sk used for signing

$$\sigma \xleftarrow{\$} \mathcal{S}(\mathsf{sk}, m)$$

└─ PKS and its Security Models

Definition – Public-Key Signature

An PKS scheme consists of three PPT algorithms $\{\mathcal{K}, \mathcal{S}, \mathcal{V}\}$ -

- Key Generation:
 - Used by the user to generate the public-private key pair (pk, sk)
 - pk is published and the sk kept secret
 - Run on a security parameter κ

$$(\mathsf{pk},\mathsf{sk}) \xleftarrow{\$} \mathcal{K}(\kappa)$$

Signing:

- Used by the user to generate signature on some message m
- The secret key sk used for signing

$$\sigma \xleftarrow{\$} \mathcal{S}(\mathsf{sk}, m)$$

- Verification:
 - Outputs 1 if σ is a valid signature on *m*; else, outputs 0

 $\mathsf{result} \leftarrow \mathcal{V}(\sigma, m, \mathsf{pk})$

Preliminaries

└─PKS and its Security Models

Definition - EU-NMA

Existential unforgeability under no-message attack

PKS and its Security Models

Definition – EU-NMA

- Existential unforgeability under no-message attack
- ► Challenger C generates key-pair (pk, sk).

PKS and its Security Models

Definition – EU-NMA

- Existential unforgeability under no-message attack
- ► Challenger C generates key-pair (pk, sk).

└─ PKS and its Security Models

Definition – EU-NMA

- Existential unforgeability under no-message attack
- ► Challenger C generates key-pair (pk, sk).
- Forgery Adversary A wins if $\hat{\sigma}$ is a *valid* signature on \hat{m} .

PKS and its Security Models

Definition – EU-NMA

- Existential unforgeability under no-message attack
- ► Challenger C generates key-pair (pk, sk).
- Forgery Adversary A wins if $\hat{\sigma}$ is a *valid* signature on \hat{m} .

Adversary's advantage in the game:

$$\mathsf{Pr}\left[1 \leftarrow \mathcal{V}(\hat{\sigma}, \hat{m}, \mathsf{pk}) \mid (\mathsf{sk}, \mathsf{pk}) \xleftarrow{\$} \mathcal{K}(\kappa); (\hat{\sigma}, \hat{m}) \xleftarrow{\$} \mathcal{A}(\mathsf{pk})\right]$$

└─ PKS and its Security Models

Definition – EU-CMA

- Existential unforgeability under chosen-message attack
- ► Challenger C generates key-pair (pk, sk).
- ▶ Signature Queries Access to a signing oracle O
- Forgery Adversary \mathcal{A} wins if
 - $\hat{\sigma}$ is a *valid* signature on \hat{m} .
 - \mathcal{A} has *not* made a signature query on \hat{m} .

Adversary's advantage in the game:

$$\mathsf{Pr}\left[1 \leftarrow \mathcal{V}(\hat{\sigma}, \hat{m}, \mathsf{pk}) \mid (\mathsf{sk}, \mathsf{pk}) \xleftarrow{\$} \mathcal{K}(\kappa); (\hat{\sigma}, \hat{m}) \xleftarrow{\$} \mathcal{A}^{\mathcal{O}}(\mathsf{pk})\right]$$

Preliminaries

Hardness Assumption

Hardness Assumption: Discrete-log Assumption Discrete-log problem for a group $\mathbb{G} = \langle g \rangle$ and $|\mathbb{G}| = p$

Hardness Assumption

Hardness Assumption: Discrete-log Assumption Discrete-log problem for a group $\mathbb{G} = \langle g \rangle$ and $|\mathbb{G}| = p$

Definition

The DLP in \mathbb{G} is to find α given g^{α} , where $\alpha \in_{R} \mathbb{Z}_{p}$. An adversary \mathcal{A} has advantage ϵ in solving the DLP if

$$\Pr\left[\alpha \in_{\mathcal{R}} \mathbb{Z}_{p}; \alpha' \leftarrow \mathcal{A}(\mathbb{G}, p, g, g^{\alpha}) \mid \alpha' = \alpha\right] \geq \epsilon.$$

The (ϵ, t) -discrete-log assumption holds in \mathbb{G} if no adversary has advantage at least ϵ in solving the DLP in time at most t.

Schnorr Signature

SCHNORR SIGNATURE

L The Construction

Schnorr Signature

The Setting.

- 1. We work in group $\mathbb{G} = \langle g \rangle$ of prime order p.
- 2. A hash function H is used.

$$\mathsf{H}: \{0,1\}^* \to \mathbb{Z}_p$$

-The Construction

Schnorr Signature

The Setting.

- 1. We work in group $\mathbb{G} = \langle g \rangle$ of prime order *p*.
- 2. A hash function H is used.

$$\mathsf{H}: \{0,1\}^* \to \mathbb{Z}_p$$

Key Generation. $\mathcal{K}(\kappa)$:

- 1. Select $z \in_R \mathbb{Z}_p$ as the secret key sk
- 2. Set $Z := g^z$ as the public key pk

└─ The Construction

Schnorr Signature

The Setting.

- 1. We work in group $\mathbb{G} = \langle g \rangle$ of prime order *p*.
- 2. A hash function H is used.

$$\mathsf{H}: \{0,1\}^* \to \mathbb{Z}_p$$

Key Generation. $\mathcal{K}(\kappa)$:

- 1. Select $z \in_R \mathbb{Z}_p$ as the secret key sk
- 2. Set $Z := g^z$ as the public key pk

Signing. S(m, sk):

- 1. Let sk = z. Select $r \in_R \mathbb{Z}_p$, set $R := g^r$ and c := H(m, R).
- 2. The signature on *m* is $\sigma := (y, R)$ where

$$y := r + zc$$

L The Construction

Schnorr Signature

Verification.
$$\mathcal{V}(\sigma, m)$$
:
1. Let $\sigma = (y, R)$ and $c = H(m, R)$.
2. σ is valid if
 $g^y = RZ^c$

Security of Schnorr Signature: An Intuition

- Consider an adversary A with ability to launch chosen-message attack on the Schnorr signature.
- Let {σ₁,..., σ_n} with σ_i = (r_i + zc_i, R_i) on m_i be the signatures that A receives.

Security of Schnorr Signature: An Intuition

- Consider an adversary A with ability to launch chosen-message attack on the Schnorr signature.
- Let {σ₁,..., σ_n} with σ_i = (r_i + zc_i, R_i) on m_i be the signatures that A receives.

$$\begin{pmatrix} 1 & 0 & \cdots & 0 & c_0 \\ 0 & 1 & \cdots & 0 & c_1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & c_n \end{pmatrix} \times \begin{pmatrix} r_1 \\ r_2 \\ \vdots \\ r_n \\ z \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ r_n \end{pmatrix}$$

Security of Schnorr Signature: An Intuition

However, A can solve for x if it gets two equations containing the same r but different c, i.e.

$$y_1 = r + zc_1$$
 and $y_2 = r + zc_2$

implies

$$z = \frac{y_1 - y_2}{c_1 - c_2}$$

Schnorr Signature

└─Oracle Replay Attack

ORACLE REPLAY ATTACK

Oracle Replay Attack

The Oracle Replay Attack

Recall the random oracle methodology.

Oracle Replay Attack

The Oracle Replay Attack

Recall the random oracle methodology.

Oracle Replay Attack

The Oracle Replay Attack

Recall the random oracle methodology.

The simulation carried out during Run 1 (from query Q_i) using a *different* random function

Oracle Replay Attack

Security of Schnorr Signature in EU-NMA

- Consider the simpler model of existential unforgeability under no-message attack (EU-NMA)
 - $\mathcal C$ gives the challenge public key pk := $(\mathbb G, g, p, g^{lpha})$ to $\mathcal A$
 - ${\cal A}$ not allowed signature queries; forges on a message \hat{m}
 - \mathcal{A} also allowed access to an H-oracle $\{Q_1, \ldots, Q_{\gamma}\}$

Security Proof

Security of Schnorr Signature in EU-NMA

$$\begin{array}{c} \mathbf{Q}_{I}^{0}: \mathbf{H}(\hat{m}_{0}, \hat{R}_{0}) = c_{0} \\ \\ \mathbf{Q}_{I}^{0} \xrightarrow{s_{1}^{0}} \mathbf{Q}_{2}^{0} \xrightarrow{s_{I}^{0}} \mathbf{Q}_{I+1}^{0} \xrightarrow{s_{\gamma}^{0}} \hat{\sigma}_{0} = (\hat{y}_{0} = \hat{r}_{0} + \alpha c_{0}, \hat{R}_{0}) \end{array}$$

Security Proof

Security of Schnorr Signature in EU-NMA

• $Q_I^0 : H(\hat{m}_0, \hat{R}_0) = c_0 \text{ and } Q_J^\phi : H(\hat{m}_1, \hat{R}_1) = c_1$

$$\mathbf{Q}_{1}^{0} \xrightarrow{\mathbf{s}_{1}^{0}} \mathbf{Q}_{2}^{0} \cdots \cdots \mathbf{Q}_{l}^{0} \xrightarrow{\mathbf{s}_{l}^{0}} \mathbf{Q}_{l+1}^{0} \cdots \cdots \mathbf{Q}_{\gamma}^{0} \xrightarrow{\mathbf{s}_{\gamma}^{0}} \hat{\sigma}_{0} = (\hat{y}_{0} = \hat{r}_{0} + \alpha c_{0}, \hat{R}_{0})$$

$$s_{l}^{1} \xrightarrow{\mathbf{s}_{l}^{1}} \mathbf{Q}_{l+1}^{1} \cdots \cdots \mathbf{Q}_{\gamma}^{1} \xrightarrow{\mathbf{s}_{\gamma}^{1}} \hat{\sigma}_{1} = (\hat{y}_{1} = \hat{r}_{1} + \alpha c_{1}, \hat{R}_{1})$$

Security Proof

Security of Schnorr Signature in EU-NMA

Security Proof

Security of Schnorr Signature in EU-NMA

$$J = I \implies \hat{m}_1 = \hat{m}_0 \land \hat{R}_1 = \hat{R}_0 \text{ and } \alpha = (\hat{y}_0 - \hat{y}_1)/(c_0 - c_1)$$

$$q_1^0 \xrightarrow{s_1^0} q_2^0 \qquad q_1^0 \xrightarrow{s_1^0} q_1^{0} \xrightarrow{s_1^0} \hat{\sigma}_0 = (y_0 = r_0 + \alpha c_0, R_0)$$

$$q_1^0 \xrightarrow{s_1^0} q_2^0 \qquad q_1^0 \xrightarrow{s_1^1} q_{l+1}^1 \qquad q_1^1 \xrightarrow{s_1^1} \hat{\sigma}_1 = (y_1 = r_0 + \alpha c_1, R_0)$$

Security Proof

Security in the Full Model

Signature query. $\mathcal{O}(m)$

Security Proof

Security in the Full Model

Signature query. $\mathcal{O}(m)$

Signature for *m* is of form σ = (r + αc, g^r), where c = H(m, g^r).

Security Proof

Security in the Full Model

Signature query. $\mathcal{O}(m)$

- Signature for *m* is of form σ = (r + αc, g^r), where c = H(m, g^r).
- But, we don't know $\alpha!$

Security Proof

Security in the Full Model

Signature query. $\mathcal{O}(m)$

- Signature for *m* is of form σ = (r + αc, g^r), where c = H(m, g^r).
- But, we don't know $\alpha!$
- Problem solved using Boneh-Boyen algebraic technique:
 - Select $c, s \in_R \mathbb{Z}_p$ and set $r = -\alpha c + s$.
 - Program the random oracle to set c = H(m, g^r) and send (s, g^r) as the signature.

Schnorr Signature

└-Security Proof

FORKING LEMMA

Forking Algorithm

The oracle replay attack formalised through the forking algorithm

Algorithm 1 $\mathcal{F}_{\mathcal{Y}}(x)$

Pick coins ρ for \mathcal{Y} at random $s_1^0, \ldots, s_{\gamma}^0 \in_R \mathbb{S}; (I_0, \sigma_0) \stackrel{\$}{\leftarrow} \mathcal{Y}(x, s_1^0, \ldots, s_{\gamma}^0; \rho)$ [Run 0] $s_{I_0}^1, \ldots, s_{\gamma}^1 \in_R \mathbb{S}; (I_1, \sigma_1) \stackrel{\$}{\leftarrow} \mathcal{Y}(x, s_1^0, \ldots, s_{I_0-1}^0, s_{I_0}^1, \ldots, s_{\gamma}^1; \rho)$ [Run 1] if $(I_0 > 0 \land I_1 = I_0 \land s_{I_0}^1 \neq s_{I_0}^0)$ then return $(1, \sigma_0, \sigma_1)$ else return $(0, \bot, \bot)$ end if

Schnorr Signature.	
Schnor	Signature

Forking Lemma

The Forking Lemma

The forking lemma gives a lower bound on the success probability of the oracle replay attack (frk) in terms of the success probability of the adversary during a particular run (acc).

The Forking Lemma

- The forking lemma gives a lower bound on the success probability of the oracle replay attack (frk) in terms of the success probability of the adversary during a particular run (acc).
- To be precise,

$$\mathsf{frk} \geq \mathsf{acc}\left(\frac{\mathsf{acc}}{\gamma} - \frac{1}{p}\right)$$

Forking Lemma

The Forking Lemma

- The forking lemma gives a lower bound on the success probability of the oracle replay attack (frk) in terms of the success probability of the adversary during a particular run (acc).
- To be precise,

$$\mathsf{frk} \geq \mathsf{acc}\left(\frac{\mathsf{acc}}{\gamma} - \frac{1}{p}\right)$$

Forking Lemma

Theorem

Theorem

If \mathcal{A} is an adversary with advantage ϵ against the Schnorr signature scheme, in the setting (\mathbb{G}, g, p) , then we can construct an algorithm \mathcal{B} that solves the DLP with advantage

$$\epsilon' \ge \epsilon \left(\frac{\epsilon}{\gamma} - \frac{1}{p} \right)$$

provided H is modelled as a random oracle with an upper bound of q_H queries.

Related Literature

- 1. Mihir Bellare and Gregory Neven. Multi-signatures in the plain public-key model and a general forking lemma.
- 2. David Pointcheval and Jacques Stern. Security arguments for digital signatures and blind signatures.
- 3. Sanjam Garg, Raghav Bhaskar, and Satyanarayana V. Lokam. Improved bounds on security reductions for discrete log based signatures.
- 4. Yannick Seurin. On the exact security of Schnorr-type signatures in the random oracle model.

Schnorr Signature

Forking Lemma

QUESTIONS?

Schnorr Signature

Forking Lemma

THANK YOU!