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Abstract

A search problem lies in the complexity class FNP if a solution to the given instance
of the problem can be verified efficiently. The complexity class TFNP consists of all
search problems in FNP that are total in the sense that a solution is guaranteed to
exist. TFNP contains a host of interesting problems from fields such as algorithmic
game theory, computational topology, number theory and combinatorics. Since TFNP
is a semantic class, it is unlikely to have a complete problem. Instead, one studies its
syntactic subclasses which are defined based on the combinatorial principle used to argue
totality. Of particular interest is the subclass PPAD, which contains important problems
like computing Nash equilibrium for bimatrix games and computational counterparts of
several fixed-point theorems as complete. In the thesis, we undertake the study of average-
case hardness of TFNP, and in particular its subclass PPAD.

Almost nothing was known about average-case hardness of PPAD before a series of
recent results showed how to achieve it using a cryptographic primitive called program ob-
fuscation. However, it is currently not known how to construct program obfuscation from
standard cryptographic assumptions. Therefore, it is desirable to relax the assumption
under which average-case hardness of PPAD can be shown. In the thesis we take a step
in this direction. First, we show that assuming the (average-case) hardness of a number
theoretic problem related to factoring of integers, which we call Iterated-Squaring,
PPAD is hard-on-average in the random-oracle model. Then we strengthen this result to
show that the average-case hardness of PPAD reduces to the (adaptive) soundness of the
Fiat-Shamir Transform, a well-known technique used to compile a public-coin interactive
protocol into a non-interactive one. As a corollary, we obtain average-case hardness for
PPAD in the random-oracle model assuming the worst-case hardness of #SAT. More-
over, the above results can all be strengthened to obtain average-case hardness for the
class CLS ⊆ PPAD.

Our main technical contribution is constructing incrementally-verifiable procedures
for computing Iterated-Squaring and #SAT. By incrementally-verifiable, we mean
that every intermediate state of the computation includes a proof of its correctness, and
the proof can be updated and verified in polynomial time. Previous constructions of such
procedures relied on strong, non-standard assumptions. Instead, we introduce a technique
called recursive proof-merging to obtain the same from weaker assumptions.
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1 Introduction

1.1 Total Search Problems

Consider the following1 combinatorial problem: for some parameter M ∈ N, we are given

an M ×M triangular grid like the one in Figure 1.1.(a) with the vertices colored either

red, blue or green, as prescribed by a function2

c : [0,M − 1]× [0,M − 1]→ {R,G,B}.

There are restrictions to the colouring of the vertices that lie on the boundary:

1. the ones at the bottom are all red: i.e., ∀i ∈ [0,M − 1] : c(0, i) = R;

2. the ones on the left, excluding the one coloured red, are all green: i.e., ∀i ∈ [1,M −
1] : c(i, 0) = G; and

3. the rest of the vertices, excluding the ones already coloured, are all blue: i.e.,

∀i ∈ [1,M − 1] : c(M − 1, i) = c(i,M − 1) = B.

However, no restriction is placed to colouring the internal vertices. The goal of the problem

is to find a trichromatic triangle, i.e., a triangle consisting of a red, green and blue vertex

each. The problem is trivial to solve if the colouring function is represented explicitly, say

as an M ×M table: for example, an algorithm that simply searches all the 2M2 triangles

is efficient. But what if we set M = 2m for some parameter m ∈ N and then present the

colouring function succinctly as a some circuit

C : {0, 1}m × {0, 1}m → {0, 1, 2} (1.1)

that is of size poly(m)? The circuit C would take as input the coordinates of a vertex

represented as two m-bit strings and return its colour encoded using {0, 1, 2}. For a algo-

rithm to be deemed efficient, it would now have to run in time poly(m) and therefore the

brute force approach from before is no longer efficient. Let’s call this problem Sperner.

1This example is taken from a lecture given by Constantinos Daskalakis at MIT.
2Throughout, we use [a, b] to denote {a, a+ 1, . . . , b}.

https://youtu.be/TUbfCY_8Dzs
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(a)

A

B C

×

A

B C

×

(b)

Figure 1.1: (a) Sperner’s Lemma on an 8×8 grid. The walk is continued by always taking

a green-red edge with the green vertex on the left (invariant) (b) Why the invariant rules

out the walk looping.

Totality of Sperner. Although Sperner may at first seem like any other search prob-

lem, it has one distinguishing feature: a theorem of Sperner [89] guarantees the existence

of a solution, i.e. trichromatic triangle. Hence, Sperner is total. To see this, let’s con-

sider a walk starting from the bottom left triangle as shown in Figure 1.1.(a). One enters

this triangle via the green-red edge and continues the walk by entering one of the adja-

cent triangle always taking a green-red edge with the green vertex on the left — this is an

invariant. Let’s see what can be said about the walk.

1. Firstly, the walk cannot exit the grid because of the invariant: there is only one

green-red edge (which is the one we took into the grid) and this cannot be used as

an exit as it is incorrectly oriented.

2. Secondly, the walk cannot end up in a loop either. To see this, suppose for contra-

diction that the walk does loop at some ∆ABC as shown in Figure 1.1.(b). Further

suppose, without loss of generality, that the triangle was exited through the edge

AB, which means that c(A) = R and c(B) = G. Since the walk loops at ∆ABC,

it must be entered through both of the other edges AC and BC. However, we can

argue that this is impossible without violating the invariant: if c(C) = G then the

triangle can be entered only via AC; on the other hand, if c(C) = R then it can

be entered only via BC. (In case ∆ABC is trichromatic, then it cannot be both

entered and exited).

Therefore, since the grid is finite, the only reason the walk halts must be because it

encountered a trichromatic triangle.
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1.1.1 TFNP and its Subclasses

Sperner is archetypal of the type of problems that we consider in this thesis. Firstly,

it is a search problem: we are asked to find a solution, unlike decision problems which

are posed as yes-no questions. Secondly, given a solution, it is possible to efficiently

verify its validity: given ∆ABC purported to be trichromatic, one simply checks that

{c(A), c(B), c(C)} = {R,G,B} using the circuit C. Finally, and most importantly, such

a trichromatic triangle can be, as we saw, guaranteed to exist making the problem total.

Let’s formalise these notions a bit more.

A search problem P is defined by an efficiently-decidable set of instances I ⊆ {0, 1}∗

such that for every instance I ∈ I there exists a set of solutions SI ⊆ {0, 1}∗. It is an

NP search problem if the set of solutions is also efficiently-decidable. The class of all NP

search problems is called Functional Non-deterministic Polynomial-time (FNP). Thus,

FNP is the search counterpart of the (decision) class NP. Moreover, an NP search prob-

lem is total if the set of solutions for every instance is non-empty. With the goal of collec-

tively studying all such problems, including Sperner, Megiddo and Papadimitriou [69]

defined the class Total Functional Non-deterministic Polynomial-time (TFNP). They

went on to show that this class is in fact the same as FNP ∩ co-FNP,3 where co-FNP

is the search counterpart of co-NP (i.e., a counterexample can be efficiently verified).

TFNP contains a host of interesting, non-trivial problems from fields such as algo-

rithmic game theory, computational topology, number theory and combinatorics. Perhaps

the two most widely-known examples are:

1. Nash, the problem of finding the equilibrium strategy in a (bimatrix) game, which

is guaranteed to exist by Nash’s celebrated theorem [72], and

2. Factoring, the problem of computing the (unique) prime factorisation of a given

integer, which is guaranteed to exist by the fundamental theorem of arithmetic.

The former is fundamental to understanding game theory and therefore economics, whereas

the latter forms the backbone of cryptography and internet security. Studying the struc-

ture of such diverse problems and the relationship between them was one of the original

motivation behind the definition of TFNP. For instance, reducing Factoring to Nash–

i.e., showing that solving Nash is at least as hard as factoring integers – would bridge

two seemingly different fields of research. One could then borrow ideas from one field and

apply it to the other.

3To show that TFNP = FNP ∩ co-FNP, it is easier if we use the alternative definition of NP

search problems using relations [69]. Let R ⊆ {0, 1}∗ × {0, 1}∗ denote a polynomially-balanced search

relation (i.e., (I, S) ∈ R implies that |S| = poly(|I|)). A polynomially-balanced relation R defines a

NP search problem if R is polynomial-time computable. Moreover R defines a total search problem if

for every instance I, there exists a solution S such that (I, S) ∈ R. It is easy to show one direction

of the containment, i.e. TFNP ⊆ FNP ∩ co-FNP: given a relation R that defines a problem in

TFNP define the FNP relation as R1 = R and set R2 = ∅. In the other direction, i.e. to show that

FNP ∩ co-FNP ⊆ TFNP, we proceed as follows. Let R1 and R2 denote FNP and co-FNP relations

corresponding a search problem. Since we know that for each I there exists either S such that either

(I, S) ∈ R1 or (I, S) ∈ R2, one can define the corresponding TFNP relation as R = R1 ∪R2.
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1.1.1.1 The Subclasses of TFNP

It is known that TFNP is unlikely to contain NP-complete problems unless NP =

co-NP [69].4 Moreover, TFNP is a semantic class and therefore unlikely to have a

complete problem.5 Therefore, we need a different notion to qualify the hardness of

problems in TFNP. To this end, one studies its syntactic subclasses which are defined

based on the combinatorial principle used to argue totality [75]. For instance, one of the

subclasses is defined based on the pigeonhole principle (PPP) and another based on the

parity argument (PPA). These subclasses do contain canonical complete problems: i.e.,

the subclass is defined as the set of all search problems that are polynomial-time Karp-

reducible (Definition 7) to this canonical problem. Therefore in order to study the class

in its entirety, it suffices to focus on the canonical complete problem.

The subclasses of TFNP, along with the relationship between them, are illustrated

in Figure 1.2. It is believed that the major subclasses PPP, PPA and PLS are funda-

mentally different [5]. More formally, it was shown in [5] that these classes are separate

with respect to (even) Turing reductions (Definition 8): i.e., there exist oracles relative to

which the complete problem of one is not Turing-reducible to that of others. This is not

surprising since the combinatorial existence theorem that is used to guarantee totality is

of different flavour for different classes. With this in mind, we describe the subclasses

below, especially the canonical complete problem that captures its structure, and men-

tion some of the interesting problems that they contain (see Figure 1.4). Since one of the

subclasses, PPAD, is the focus of this thesis, we will cover it in more details in §1.1.2,

following the discussion.

Polynomial Pigeonhole Principle (PPP). As the name suggests, the existence of so-

lution for problems in PPP is guaranteed by the pigeonhole principle: if n balls are

placed in m < n bins then at least one bin must contain more than one ball. The

hardness of this class is captured by its canonical complete problem Pigeon, which

is described below.

Definition 1. Pigeon

Instance. A circuit C : {0, 1}m → {0, 1}m

Solution. One of the following:

1. Preimage of 0m: x ∈ {0, 1}m such that C(x) = 0m

4Suppose for contradiction that TFNP contains the NP-complete SAT. On input a SAT instance

Φ, the algorithm return an assignment x. But if x does not satisfy Φ the we know that Φ is not satisfiable

and therefore solve the co-NP-complete problem UNSAT.
5A complexity class is said to be syntactic if it possible to efficiently check whether an appropriately

standardized machine (say a Turing machine or a Boolean circuit) indeed defines a language in the class.

On the other hand, a class is semantic if this is not possible and there is a “promise” involved [76].

Phrased differently, for a syntactic class it is guaranteed that a machine defines some language in that

class, whereas this might not be the case for a semantic class. Examples for syntactic classes are P, NP

and PP; whereas RP and co-RP are semantic classes. It is believed that semantic classes are unlikely

to have complete problems. A thorough discussion can be found at this thread on StackExchange.

https://cstheory.stackexchange.com/questions/1233/semantic-vs-syntactic-complexity-classes
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FP

CLS

PPAD

PPADS

PWPP

PPA PPPPLS

PTFNP

TFNP

FNP

Figure 1.2: The TFNP landscape. The arrows indicate containment, and this relationship

is transitive. An absence of arrow is to be interpreted as a separation between the classes.

The dotted lines indicate that neither containment nor separation is known between the

classes.

2. Collision: x, y ∈ {0, 1}m such that C(x) = C(y)

An interesting problems that lies inside the class (but is not known to be complete)

is EqualSums [3]: given a1, . . . , an ∈ N such that
∑

i∈[n] ai < 2n − 1, find two

subsets S 6= T ⊆ [n] such that
∑

i∈S ai =
∑

i∈T ai. Recently, it was shown that a

problem related to Blichfeldt’s theorem on lattices (Blichfeldt) is complete for

PPP [88]. This is the first natural problem that was shown to be complete for the

class.6

Polynomial Parity Argument (PPA). The class captures computational problems

whose totality is rooted in the handshaking lemma for undirected graphs: every

(finite) undirected graph has an even number of vertices of odd degree. The hard-

ness of this class is captured the problem Lonely described below.7

Definition 2. Lonely

Instance. A circuit C : {0, 1}m → {0, 1}m

6A problem is considered to be “natural” if its description does not inherently involve a circuit. For

instance Sperner is a natural (combinatorial) problem, whereas Pigeon is not as its definition is tied

to a circuit.
7We note that problems like Leaf, Odd and Even are all polynomial-time equivalent to Lonely

(with respect to Karp reductions) and therefore are also complete for PPA [5]. Although they are also

canonical in nature, their definition relies on a circuit that maps n bits to O(n) or poly(n) bits. We find

the n to n circuit in Lonely to be more minimal and therefore prefer to use it over the others.
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Guarantee. 0m is unpaired: C(0m) = 0m

Solution. One of the following:

1. Unpaired vertex: x ∈ {0, 1}m \ {0m} such that C(x) = x

2. Violation: x, y ∈ {0, 1}m such that C(x) = y but C(y) 6= x

Intuitively, C defines an involution (i.e., a graph with degree at most one) over

{0, 1}m with (x, y) being an edge if and only if C(x) = C(y) but with 0m unpaired

(see Figure 1.3). By handshaking lemma, therefore, there exists another vertex

that is paired with itself. Some of the problems that belong to PPA include the

Borsuk-Ulam theorem from topology (Borsuk-Ulam) and Tucker’s lemma [37]

and Necklace Splitting [41] from combinatorics. The aforementioned problems are

also known to be complete for PPA.

000 001 010 011

100 101 110 111

(a)

000 001 010 011

100 101 110 111

(b)

Figure 1.3: Sample Lonely instance with eight vertices {0, 1}3. The output of the circuit

is indicated in (a) by the dotted, directed edges: i.e., an edge (u, v) implies that C(x) = y.

The solid, undirected edges are the edges in the implicit (involution) graph shown in (b):

i.e. an edge (u, v) implies that C(x) = y and C(y) = x. The unpaired vertices are in black.

Note that the two nodes 010 and 101 remain unpaired because they are violations.

Polynomial Local Search (PLS). PLS was defined to capture the difficulty of finding

a local optimum in optimization problems such as the Travelling Salesman Problem.

The principle that guarantees the existence of such optima is that every directed

acyclic graph (DAG) has a sink. The canonical complete problem for the class is

called Local-Search (LS) and is described below [58].

Definition 3. Local-Search (LS)

Instance.

1. A successor circuit S : {0, 1}m → {0, 1}m

2. A potential circuit F : {0, 1}m → [2m]

Solution. Local optimum: x ∈ {0, 1}m such that F(x) ≥ F(S(x))

Intuitively S and F, together, implicitly define a DAG where (x, y) is an edge if

y = S(x) and F(y) ≥ F(x), and the goal is to find the sink of this DAG. The

well known algorithms for finding a local optimum such as Simplex Algorithm or

Gradient Descent can be considered as simple traversals of this graph towards to

the sink.
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Polynomial Parity Argument on Digraphs (PPAD). PPAD is contained in PPA∩
PPP and could be regarded as the directed version of the class PPA. The class

became a subject of intensive study due to its relation to the problem Nash. Pa-

padimitriou showed that Nash belong to PPAD via a reduction to End-of-Line

(EOL), its canonical complete problem. A reduction in the opposite direction was

later established in a sequence of works by Daskalakis, Goldberg and Papadim-

itriou [35], and Chen, Deng and Teng [30]. PPAD also contains other important

problems like computational counterparts of Brouwer and Katukani fix-point theo-

rems as complete. We will see in §1.1.2 why Sperner, the combinatorial problem

that we started off our discussion of TFNP with, also belongs to this class.

Continuous Local Search (CLS). Roughly speaking, the class CLS ⊆ PLS∩PPAD

contains “continuous” variants of the problems in PLS [36]. The complete problem

for the class is called Continuous-Local-Optimum (CLO), and it is similar to

Local-Search but the successor and value circuits are now guaranteed to behave

“smoothly” (through Lipschitz continuity). The class is particular interesting to

the game theory community as a plethora of games (e.g., Simple Stochastic Games,

Mean-Payoff Games) are known to lie inside this class [39]. Another interesting

problem that lies in this class (but not known to be complete) is End-of-Metered-

Line (EOML) [56]. As the name suggests, EOML is closely-related to EOL and

we will exploit this connection to extend all of our results for the class PPAD to

CLS (see §2.3).

Before moving on to PPAD, we briefly discuss the remaining subclasses. The class

Polynomial Weak Pigeonhole Principle (PWPP) [57] contains problems related to finding

collisions in functions. Although it is contained in PPP, the relationship of PWPP

with the rest of the subclasses is not well-understood. PPADS is a more restricted

version of PPAD. Finally, the subclass Provable Total Functional Non-deterministic

Polynomial-time (PTFNP) was recently introduced with the goal of developing a more

unified complexity theory of TFNP problems [48]. It contains all of the subclasses that we

have discussed above, but the membership of some of the “rogue” TFNP problems (viz.

Factoring, Ramsey: given a graph of size 22m find either a clique or an independent

set of size m) in PTFNP is yet to be established.

1.1.2 The Complexity Class PPAD

PPAD can be considered to be the “directed” or “oriented” analogue of the class PPA

(which makes it easier than PPA). The principle that underlies this class is the directed

formulation of the handshaking lemma: for any (finite) digraph, if there exists an un-

balanced vertex, i.e. a vertex with unequal in- and out-degree, then there exists another

unbalanced vertex. The canonical complete problem for this class goes by the name End-

of-Line (EOL): given a (standard) source in a directed graph where every vertex has

both in-degree and out-degree at most one, find a sink or another source [75]. This prob-

lem can be solved in linear time when the graph is given explicitly, but there is no known
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FP

TFNP

CLS

CLO

•EOML

PPAD

EOL

Nash

Sperner

PLS
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PPP

Ramsey

Blichfeldt

Pigeon

EqualSums

PPA

Borsuk-Ulam

Lonely

PWPP
• DLP
• SIS

Factoring

Figure 1.4: Problems in TFNP. A problem that lies above dotted line is complete for

that class. The canonical complete problems for their classes are in blue. Inclusions that

are not established using a Karp reduction (e.g., randomised or Turing) are in red.
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algorithm solving it in polynomial time when the input is an implicit representation of

the graph describing the successor and predecessor of every vertex, as described below.

Definition 4. End-of-Line (EOL)

Instance.

1. A successor circuit S : {0, 1}m → {0, 1}m

2. A predecessor circuit P : {0, 1}m → {0, 1}m

Guarantee. 0m is unbalanced: P(0m) = 0m and S(0m) 6= 0m

Solution. An unbalanced vertex v ∈ {0, 1}m: P(S(v)) 6= v or S(P(v)) 6= v 6= 0m

To see why totality is not semantic but syntactic, we have to first explain a few

technicalities [47]. Note that any badly defined edge, i.e. S(u) = v and P(v) 6= u or P(v) =

u and S(u) 6= v, qualifies as a solution of EOL as defined above (because P(S(u)) 6= u

or S(P(u)) 6= u respectively: see Figure 1.5.(a). Note that 0m is a source of the graph,

unless P(S(0m)) 6= 0m, in which case 0m is a valid solution to the problem as stated above.

One could now think of “sanitised” EOL instance (S′,P′) with such badly defined edges

turned into self-loops: see Figure 1.5.(b). The circuits S′ and P′ can intuitively be viewed

as succinctly implementing a directed graph of degree at most one over {0, 1}m, where

for each pair of vertices v and u there exists an edge from v to u if and only if S′(v) = u

and P′(u) = v (see Figure 1.5.(c)). Given that 0m is unbalanced, the goal is to another

unbalanced vertex. Such a vertex must always exist by the handshaking lemma.

It is easy to see why EOL reduces to Pigeon: the reduction simply sets C(x) := S(x).

Since 0m doesn’t have a preimage in this Pigeon instance, the adversary must return a

collision and these correspond to the sink and its predecessor. The reduction from EOL

to Lonely, although intuitive, is trickier and can be found, for example, in [5].

Sperner is in PPAD. An obvious way to solve any given EOL instance is to sim-

ply follow the standard path, i.e. by starting from the standard source and iteratively

applying the successor circuit until one hits a sink. An obvious way to solve any given

Sperner instance is to simply follow the walk that we used to establish the existence of

a trichromatic triangle. Both approaches could potentially take super-polynomially many

steps. At first glance, from the way the problems are solved, it seems that Sperner

and End-of-Line share some structural similarities: both problems can be solved by

following a well-defined (directed) walk starting from a standard source vertex to its end.

We formalise this intuition by showing that Sperner is indeed Karp-reducible to EOL.

Theorem. Sperner ∈ PPAD [75].

Proof (sketch). The reduction almost follows from the proof for totality of Sperner that

we explained in the introduction. We need an extended version of that argument which

establishes the existence of an odd number of trichromatic triangles, discussed next. Let’s

call the walk we used to establish the first trichromatic triangle the standard walk. Con-

sider any trichromatic triangle ∆ABC other than the one established by the standard
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0000

(a) (b)
(c)

Figure 1.5: Sample End-of-Line instance with 16 vertices {0, 1}4. The output of the

successor (resp., predecessor) circuit is indicated in (a) by the dotted (resp., dashed),

directed edges: i.e., a dotted (resp., dashed) edge (u, v) implies that S(u) = v (resp.,

P(u) = v). The vertices having badly defined edges are shown in red. The graph in (b)

corresponds the “sanitised” EOL instance (S′,P′) where the such edges have been turned

into self loops. The solid, directed edges are the edges in the implicit graph shown in (c):

i.e. an edge (u, v) implies that S(x) = y and P(y) = x. The source and sink vertices are

shown in blue; self-loops are in black.

walk: e.g., see Figure 1.6. Suppose for the time being that it has green-red edge with a

green vertex on the left. Let’s start a walk from ∆ABC using the same rules as before.

By the same argument as before, this walk can neither exit the grid nor loop with itself.

By the same argument that ruled out loops, it can also be established that this walk

cannot collide with the standard walk. Therefore, since the grid is finite, the walk halts

at another trichromatic triangle. In the complementary case that ∆ABC has a green-red

edge with a green vertex on a right, we simply perform the walk backwards with the rules

reversed. That is the trichromatic triangles are all, except the standard one, paired up.

The actual reduction proceeds as follows. Let the Sperner instance be presented

using the colouring circuit C : {0, 1}m × {0, 1}m → {0, 1, 2}. We associate every triangle

∆ABC implicit in this instance with vertex of the EOL instance. (Therefore the size of

labels of this EOL instance is 6m.) In particular, the bottom-left triangle acts as the

standard source of the EOL instance (06m) and the trichromatic triangles, depending on

their orientation, will correspond to either a source or a sink. The successor circuit, on

input a vertex interpreted as the coordinates of ∆ABC, uses C to determine whether

it is possible to walk out of this triangle, i.e., if there exists a green-red edge with the

green vertex on the left. If so it returns the coordinates of next triangle as its output;

otherwise, it returns the coordinates of ∆ABC itself. The functioning of the predecessor

is symmetrically opposite. Note that the standard walk, used to establish the existence of

the first trichromatic triangle, is mapped to the path starting off at the standard source

of the EOL instance. In case there exists other (pairs of) trichromatic triangles in the

Sperner instance, these will also result in directed paths: e.g., see Figure 1.6. (Note

that cycles are a possibility in this EOL instance as shown in Figure 1.6). It follows that
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Figure 1.6: Sperner is Karp-reducible to End-of-Line. The End-of-Line instance

that is constructed out of the Sperner instance is shown using dotted lines. The

source and sink of the EOL instance corresponds to the trichromatic triangles (which

are shaded). The triangles which are not the part of any walk are considered to be

self-loops.

from any unbalanced vertex in the EOL instance, we can recover the coordinates of a

trichromatic triangle, completing the reduction.

1.2 Cryptography and Total Search Problems

Over the years, the research community has striven to classify total search problems into

the subclasses of TFNP, which has resulted in a rich network of reductions. This, in some

sense, reinforces the belief that these problems are hard in the worst case – i.e., for every

efficient algorithm there exist instances of the problem that are hard to solve.8 But it could

very well be the case that these problems are easy in the average case, say, because of some

heuristic algorithm that solves most instances of the problem. One such example is the

Lemke-Howson algorithm, which efficiently solves most instances of Nash that occur in

practice [65]. In light of this, it is natural to seek “extrinsic” evidence supporting TFNP

hardness. That is, as raised in Papadimitriou’s original paper [75], whether something

can be said about the average-case hardness of total problems. In particular, do there

exist efficiently-sampleable distributions of instances on search problems that would fail

all heuristics?

8Currently, no PPAD-complete problem is known to admit a sub-exponential-time worst-case algo-

rithm. However, on the face of it, all TFNP problems could be potentially solvable in polynomial time

without defying our understanding of the broader landscape of complexity theory (e.g. no surprising

collapse of any important complexity classes seems to be implied by assuming TFNP ⊂ FP) We do

however know of worst-case hard instances for a specific algorithm for finding a Nash equilibrium [87] or

of oracle-based worst-case hard instances of PPAD-complete problems [53; 2].
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Since proving average-case hardness unconditionally implies that P 6= NP we would

have to instead reduce from search problems that are assumed to be hard-on-average,

i.e. under a average-case hardness assumption. One source of such problems is modern

cryptography where the ability to sample problems that are hard-on-average is necessary

to build even the most basic functionalities like encryption and signatures – problems

that are hard in the worst case are simply not sufficient. For instance, the security of

one of the components of HTTPS (i.e., Hypertext Transfer Protocol Secure) is under the

assumption that Factoring is hard-on-average. Another example is the widely-deployed

DSA (Digital Signature Algorithm) and EC-DSA (Elliptic-Curve DSA) signature schemes

which have DLP, the problem of computing the discrete logarithm in a prime-order group,

at their heart. The main reason to believe that these problems are hard is that even after

decades of search for efficient algorithms, they remain elusive.

1.2.1 Average-Case Hardness in TFNP

The aforementioned cryptographic hard problems, Factoring and DLP, are both total

and therefore imply average-case hardness in TFNP. Since we strive for minimality, the

question that naturally follows is whether these problems also imply hardness in any of

its lower subclasses. The benefits of such a result would be two-fold. Firstly, it would

rule out heuristics for the subclass. To be more precise, it would give us a way to sample

instances of the problem such that any efficient algorithm would fail to find a solution

to the problem. For example, establishing average-case hardness in PPAD would allow

us to sample instances of Nash that defeats the Lemke-Howson algorithm. Secondly, it

would shed more light on the structure of that hard problem. This is interesting from the

point of view of a cryptographer as it would have potential implications to cryptanalysis

of the hard problem.

Average-case hardness under standard cryptographic assumptions was long known for

some of the higher subclasses of TFNP. The most notable results are the following.

1. One-way permutations (OWPs) implies hardness of PPP [75]. Let (π, y∗) denote an

instance of OWP, where π : {0, 1}m → {0, 1}m is a circuit evaluating the OWP and

y∗ ∈ {0, 1}m is the challenge that is supposed to be inverted. The Karp reduction

maps (π, y∗) to the Pigeon circuit

Cy∗(x) := π(x)⊕ y∗

where ⊕ denotes the bitwise XOR operation. Since π is a permutation, this Pigeon

instance does not have any collision. Therefore the only solution is the preimage

of 0m, i.e., x∗ ∈ {0, 1}m such that π(x∗) = y∗, which is the solution to the OWP

instance.

2. Hardness of PWPP from collision-resistant hash functions (CRHFs) follows triv-

ially. It is folklore that hardness of PPP also follows from CRHFs. Given a CRHF
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H : {0, 1}m → {0, 1}m−1 that shrinks the input by one bit, the Karp reduction maps

it to the Pigeon circuit

C(x) := 1‖H(x),

where ‖ denotes the string-concatenation operator. Since this instance does not

map any element to 0m, the only solutions are collisions in the circuit and each such

collision yields a collision to the CRHF. Since problems like Factoring, DLP, SIS

(i.e., the short integer solution problem on lattices) imply CRHFs, it follows that

they also give rise to PPP-hardness.

3. Factoring implies hardness of PPA albeit via randomised reductions [23; 57].

Given an instance N ∈ N of Factoring the reduction, roughly speaking, defines

the Lonely instance as

C(x) := x−1 mod N,

with 1 ∈ Z∗N set to be the trivial unpaired vertex. Since one of the other unpaired

vertices in this instance is an element x 6= 1 ∈ Z∗N such that x2 = 1 mod N , one of

the factors of N can be extracted by computing GCD(x− 1, N).

In addition, Hubáček, Naor and Yogev [55] recently constructed hard TFNP problems

from one-way functions (or, in fact from any average-case hard NP language) under

complexity theoretic-assumptions used in the context of derandomization. Though, it is

not known whether their distribution gives rise to average-case hardness in any of the

syntactic subclasses of TFNP. Komargodski, Naor and Yogev [62] demonstrated a close

connection between the existence of collision-resistant hashing and the Ramsey problem

(Ramsey). Ramsey is not known to lie inside any of the syntactic subclasses of TFNP

though (see Figure 1.4).

1.2.1.1 Barriers to Average-Case Hardness

The relatively small progress on showing average-case hardness of total search problems

from weak general assumptions (like one-way functions, which is very unstructured) mo-

tivated a line of works focusing on limits for proving average-case hardness. The implau-

sibility of using worst-case NP hardness [58; 69] was later strengthened to show that it

is unlikely to base average-case TFNP hardness even on problems in the polynomial hi-

erarchy [22], and to show that any randomized reduction from a worst-case NP language

to an average-case TFNP problem would imply that SAT is checkable [68]. A recent

result [85] applies to the whole of TFNP and shows that any attempt for basing average-

case TFNP hardness on (trapdoor) one-way functions in a black-box manner must result

in instances with exponentially many solutions. This is in contrast to all known construc-

tions of average-case hard PPAD problems that result in instances with a small number

of solutions.
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1.2.2 Average-Case Hardness in PPAD

In the previous section we saw how certain cryptographic primitives impart hardness to

some of the subclasses of TFNP that are higher up. It is currently not known whether

any of these results can be extended to lower subclasses like PPAD or CLS. Neither

was it not known if their average-case hardness could be based on other cryptographic

primitives like fully-homomorphic encryption. This was the state of affairs until a series

of results established a connection between a newly-introduced cryptographic primitive

known as program obfuscation and the hardness of PPAD.

Loosely speaking, program obfuscation allows us to efficiently “scramble” programs

without losing its functionality [4]. That is, given a program P represented in an appropri-

ate model of computation (say, Turing machines or Boolean circuits), the obfusctor returns

its scrambled version P̂ such that P(x) = P̂(x) on all inputs x (completeness). There

are various notions of soundness, the strongest being that of virtual black-box (VBB)

obfuscation: the obfuscated program P̂ should not reveal any information on P other

than its input-output behaviour. It was shown in [4] that this notion is not attainable

in general, and they suggested weakening the soundness requirement to indistinguisha-

bility obfuscation (IO): the obfuscations of two functionally equivalent programs should

be indistinguishable. It turned out that this weakened notion is still strong enough to

obtain interesting, non-trivial results (such as public-key encryption from private-key en-

cryption) [86]. Moreover, many candidate construction were proposed, albeit from new,

non-standard hardness assumptions [43].

PPAD-hardness via obfuscation. The connection between obfusction and PPAD-

hardness was first observed in [1]. They showed how to obtain hard distribution of in-

stances of the End-of-Line problem using VBB obfuscation. On a high level construction

can be divided into two steps (see §2.2 for a detailed explanation):

1. construct hard distribution of a promise problem called Sink-of-Verifiable-Line

(SVL) using VBB obfuscation and one-way functions; and

2. given this SVL instance, simulate End-of-Line using reversible black pebbling [7].

Bitansky, Paneth and Rosen [12], in their breakthrough paper, demonstrated how the

first step above can be carried out using sub-exponentially-secure IO (i.e., the soundness

should hold with respect to adversaries that run in time sub-exponential in the security

parameter). This gave the first extrinsic evidence of PPAD hardness and provided a

plausible method to sample potentially hard-on-average End-of-Line instances using

the candidate from [43].

The result in [12] was extended by Hubáček and Yogev [56], who observed that the

second step in the above construction essentially, for free, yields instances the End-of-

Metered-Line problem, which lies in the class CLS ⊆ PLS ∩ PPAD. Both results

were subsequently strengthened. First, by Garg, Pandey and Srinivasan [44], who reduced

from breaking IO with polynomial (instead of sub-exponential) hardness (or alternatively
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compact public-key functional encryption) and one-way permutations. Second, by Komar-

godski and Segev [63], who reduced from breaking quasi-polynomially secure private-key

functional encryption and sub-exponentially-secure injective one-way functions.

1.3 Overview of the Thesis

In one way or another, all of the above assumptions used to construct hard instances of

PPAD are closely related to IO, whose attainability is not implausible but nevertheless

still lies within the domain of speculation. Given that many candidate IO schemes have

been broken, and that surviving ones are yet to undergo extensive evaluation by the cryp-

tographic community, it is desirable to base PPAD-hardness on alternative assumptions.

In this thesis, we take a step in this direction by showing PPAD-hardness under assump-

tions that are of a different flavour from obfuscation (and arguably weaker). We give a

summary of our results in §1.3.1 and then in §1.3.2 provide a high-level overview of the

techniques used to obtain these results. Our results demonstrates new ways for sampling

hard-on-average PPAD instances, based on assumptions of seemingly different nature

than those required by prior work (e.g., number-theoretic, in contrast to ones related to

obfuscation).

1.3.1 Main Results

In this thesis, we present two constructions of hard distribution of End-of-Line. The

first construction relies on the (average-case) hardness of a number-theoretic problem that

we call Iterated-Squaring, and requires a random oracle, i.e. a random function that

is accessible to all parties [6]. The second construction relaxes these assumptions to a

considerable degree. On a high level, both the constructions deploy the same technique,

i.e., incrementally-verifiable computation via recursive proof-merging. In particular, the

second construction can be considered to be a strengthening of the first. We next state,

informally, the two main theorems in this thesis.

1.3.1.1 PPAD-Hardness from Iterated-Squaring

Our first construction is based on the hardness of Iterated-Squaring (IS), described

next. For some time parameter T ∈ N, IS involves computing the function

f(N, x, T ) = x2T mod N, (1.2)

where N is the product of two random λ/2-bit safe primes (where p is a safe prime if (p−
1)/2 is also a prime) and x ∈ Z∗N . Computing f was suggested as a hard problem by Rivest,

Shamir and Wagner[84], who conjectured that for any T , computing f(N, x, T ) either

requires Ω(T ) sequential time or total computation sufficient to factor N . Our hardness

assumption on IS is milder: it is sufficient for us that eq.(1.2) cannot be computed in time

poly(λ) for some (potentially exponentially large) T (see Assumption 2 in §3.1.2). Our
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reduction also requires assuming access to a random oracle, which is used in the context of

transforming a log T -round public-coin interactive proof from [78] into a non-interactive

one (see the discussion below). The reduction can be informally stated as follows.

Theorem (informal). For a security parameter λ ∈ N, let N be a modulus generated as

described above. If there exists a time parameter T = T (λ) ≤ 2λ such that no poly(λ)-time

algorithm, on input (N, x, T ), can compute x2T mod N except with negligible probability

then, relative to a random oracle, there exists a hard distribution of End-of-Line in-

stances. That is, Iterated-Squaring is Turing-reducible to End-of-Line relative to

a random oracle.

1.3.1.2 PPAD-Hardness from Fiat-Shamir Methodology

In our second construction, we relax the hardness assumption from Iterated-Squaring

to the mild complexity-theoretic assumption that #SAT, the problem of counting the

number of satisfying assignments to a CNF formula, is hard in the worst case. In addition

we rely on the so-called Fiat-Shamir methodology [40], a technique used to transform a

public-coin interactive protocol into a non-interactive protocol, which we explain next.

Recall that in an interactive protocol a prover (which is usually unbounded) tries

to convince a computationally-bounded verifier of the validity of a statement, e.g. the

number of satisfying assignments to a SAT instance. The protocol is usually executed

over several rounds, over which the prover and verifier exchange messages with each other

as shown in Figure 1.7.(a). The verifier is probabilistic and if the random coins used to

sample its messages can be public, we say that the protocol is public-coin (and otherwise

it is secret-coin). The protocol is said the be sound if it is hard for the prover to convince

the verifier of a false statement, e.g. of wrong number of satisfying assignments to a SAT

instance.

In the Fiat-Shamir methodology, a public-coin interactive protocol is compiled into

a non-interactive protocol by, loosely speaking, replacing the verifier in the public-coin

protocol with a hash function H sampled randomly from a family of hash functions H.

This is carried out as follows: in each round i ∈ [`], instead of obtaining the message

from the verifier, the prover computes it itself by hashing the transcript of the protocol

(so far) using H. As a result, in the non-interactive version of the protocol, the prover

simply simulates the verifier by computing the hash internally and then only sending the

last message over as shown in Figure 1.7.(b). Given the original interactive protocol is

sound, we say that the Fiat-Shamir Transform maintains soundness (or simply, is sound)

if the non-interactive protocol that results by applying the transform is also sound.

For our construction, we require the Fiat-Shamir Transform to maintain soundness

for the Sumcheck Protocol, an interactive protocol that was used in [67] to show that

#SAT ∈ IP. That is, it allows a prover to convince a verifier of the number of satisfying

assignments to a SAT instance. The protocol runs in n rounds, where n denotes the

number of variables in the #SAT instance. Since breaking the soundness of Fiat-Shamir is
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Figure 1.7: The Fiat-Shamir Transform. (a) An `-round interactive protocol between a

prover P and a verifier V. I denotes the statement that the prover is trying to convince

the verifier about. The i-th message from the prover to the verifier is denoted by αi; the

i-th message in the opposite direction is denoted by βi. (b) The non-interactive protocol

as a result of the transform. The i-th message from the verifier βi is now computed by

the prover (by itself) as the hash of the transcript (with respect to V) up to that point,

i.e. H(I, α1, β1, . . . , αi−1). Therefore only the prover messages α1, . . . , α` are now required

to be sent.

reducible to #SAT (in fact to SAT) it follows that efficiently solving the above distribution

is no easier than breaking Fiat-Shamir.

Theorem (informal). Solving the End-of-Line problem is no easier than breaking the

(adaptive) soundness of the Fiat-Shamir Transformation, when applied to the Sumcheck

Protocol.

Moreover, we show that the soundness indeed holds when H is instantiated with a

random oracle.9 Therefore, we get the following theorem and its corollary.

Corollary (informal). If #SAT is hard (in the worst case) then, relative to a random

oracle, there exists a hard distribution of End-of-Line instances.10

Two remarks are in order. Firstly, there is growing evidence that it might be possible

to instantiate the Fiat-Shamir using hash functions that are constructed from standard

assumption [24]. Therefore, it is plausible that the hardness of our construction is based

an object other than the random oracle. We show in §4.4 that this is indeed that case

under some strong assumptions on fully-homomorphic encryption (FHE). We defer this

discussion to §4.1.1 in Chapter 4. Secondly, all of the above results (including the above

instantiation using FHE) can be strengthened to achieve hardness in CLS ⊆ PLS ∩
PPAD by applying the observations in [56]. We discuss more on this in §2.3 in the next

chapter.

9In fact, the usage of random oracle in the previous result can be thought of applying a variant of the

Fiat-Shamir Transform to the protocol from [78].
10In the original paper [31], we had claimed that the corollary holds just relative to a random oracle,

without the additional assumption on #SAT. However, this is not correct: see Remark 8.
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1.3.2 Techniques

In both constructions, we follow the blueprint from [1; 12] that we discussed in §1.2.2.

That is, we proceed via the following two steps:

1. construct hard distribution of the Sink-of-Verifiable-Line (SVL) problem; and

2. given an SVL instance from the above distribution, simulate End-of-Line using

reversible black pebbling.

Since the second step is more or less similar to previous constructions, in this overview

we focus on the first step. In particular, we explain it from the point of view of the first

construction (from Iterated-Squaring) since it is conceptually simpler to explain.

However, it still suffices to demonstrate the essential techniques that underlies both con-

structions (viz. incremental computation, recursive proof-merging, unique proofs). We

defer the overview of the second construction to Chapter 4 and limit ourselves here to

highlighting its differences from the first (at the end of the section). Since SVL is cen-

tral to these constructions, first we formally define it the section below and explain its

relationship with the notion of incrementally-verifiable computation [91].

1.3.2.1 Sink-of-Verifiable-Line

Definition 5. Sink-of-Verifiable-Line (SVL)

Instance.

1. Length L ∈ {1, . . . , 2m}
2. A successor circuit S : {0, 1}m → {0, 1}m

3. A verifier circuit V : {0, 1}m × {1, . . . , L} → {0, 1}

Promise. For every v ∈ {0, 1}m and i ∈ {1, . . . , L}: V(v, i) = 1 iff v = Si(0m).

Solution. Sink vertex: v ∈ {0, 1}m such that V(v, L) = 1

Intuitively, the circuit S can be viewed as implementing the successor function of a

directed graph over {0, 1}m that consists of a single path, the “standard path”, starting

at 0m. The circuit V enables to efficiently test whether a given vertex v is of distance i

from 0m on this standard path, and the goal is to find the vertex that lies at a distance

L from 0m, the standard sink. Note that not every tuple (S,V, L) is a valid SVL instance

since V might not satisfy the promise about its behaviour: see Footnote 5. Moreover,

there may not be an efficient algorithm for verifying whether a given tuple (S,V, L) is a

valid instance, hence this problem lies outside of TFNP.

Relationship with incrementally-verifiable computation (IVC). Consider a party

A carrying out a time-intensive (deterministic) computation C like, e.g., testing whether

a number Mp is a Mersenne prime (which takes months for the ps being presently tested).
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0000

Figure 1.8: Sample Sink-of-Verifiable-Line instance with 16 vertices (i.e., m = 4)

with a standard path of length L = 8 . The output of the successor circuit is indicated

by the directed edges: i.e., an edge (u, v) implies that S(u) = v. The source and standard

sink vertex are in blue. The vertices that lie off the standard path, thus rejected by the

verifier, are in black.

There could arise scenarios where A must discontinue computing C but would like to

hand over the intermediate state to another party B who then continues the computa-

tion. However B might be distrustful of A and the purpose of IVC is to help bridge this

distrust.

Suppose that on input I, the computation of C goes through the sequence of configu-

rations

C0 → . . .→ CT

for some (large) T ∈ N. Instead of computing C plainly as above, the idea in IVC is

to carry it out verifiably using an alternative program Ĉ which, to every intermediate

configuration Ci, attaches a succinct proof πi := π(C0
i−→ Ci) that attests to the fact that

Ci is obtained from C0 in i steps.11 Therefore the sequence of configurations for the IVC

would look like:

(C0, π0)→ . . .→ (CT , πT ). (1.3)

Any party should be able to use πi to efficiently verify that the Ci is indeed the i-th step in

the computation. Moreover, given any intermediate configuration (Ci, πi) of Ĉ, computing

the next configuration (Ci+1, πi+1) should be incremental, i.e. takes time comparable to

computing Ci+1 from Ci. Together, the incremental and verifiable nature of Ĉ, enables A

to halt at any intermediate stage of the computation and B to take over from that point

onward.

It is not difficult to see how IVC could potentially be used to design a hard SVL

instance. We start off by setting the standard path in the SVL instance as the sequence

of configurations in eq.(1.3). Given a vertex (Ci, πi), the successor circuit uses the incre-

mental property of IVC to (efficiently) compute (Ci+1, πi+1) and returns it as the next

vertex. The verifier circuit, on the other hand, simply invokes the verifiable property of

11By succinct, we mean the size of the proof should be independent of the run-time T ). Note that IVC

can be trivially achieved without the succinctness requirement. For example, Ĉ could simply maintain

all the previous configurations in the proof: i.e., πi := C0, . . . , Ci−1.
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IVC. Although there are several issues that needs to be addressed with the above ap-

proach (which we do in §1.3.2.3), we see next in our first construction how some of the

ideas indeed turn out quite useful.

1.3.2.2 Sink-of-Verifiable-Line from Iterated-Squaring

To explain our construction, we rely on a slightly different formulation of SVL where the

standard source can be any arbitrary vertex v0 ∈ {0, 1}m. This formulation can be shown

to be equivalent to Definition 5: see Lemma 1 and Remark 1.

Consider the following natural approach for reducing the computation of f(N, x, T )

to an instance of SVL of length L = T and vertices of size λ (i.e. m = λ). The graph’s

source v0 is a random x ∈ Z∗N , and the successor circuit S is the squaring modulo N

function, yielding the standard path:

x→ x2 → x22 → x23 · · · → x2T (modN). (1.4)

Notice that, assuming x2T mod N cannot be computed in time poly(λ) for a sufficiently

large T , it is hard for any polynomial-time algorithm to find the node that is T steps from

the source x.

In order to complete the reduction to SVL, we need to provide an efficient V that

certifies that a vertex v = y is obtained by invoking S for i successive times on x. This is

where Pietrzak’s proof system for certifying y = f(N, x, T ) comes into play [78].

Pietrzak’s proof system. Pietrzak’s protocol allows a prover to convince a verifier

that a tuple I = (N, x, T = 2t, y) satisfies the relation y = x2T mod N using t = log T

rounds of interaction. It does not require either prover or verifier to know the factorization

of N . The protocol is recursive in the time parameter T . In the first step, the prover

sends the midpoint µ = x2T/2 mod N as a commitment to the verifier. If

x2T/2 = µ mod N and µ2T/2 = y mod N

both hold, then so does the original claim. This reduces the task of proving a statement

for parameter T to proving two statements for parameter T/2. Next, using a random

challenge r, the verifier and prover merge these two statements into a single statement

by computing x′ := xr · µ mod N and y′ := µr · y mod N and setting I ′ = (N, x, T =

2t, y) as the new statement. The above constitutes the “halving” sub-protocol, which is

illustrated in Figure 1.9. One can show that if the statement (N, x, T, y) is wrong, then

with overwhelming probability over the choice of r so is the new statement (N, x′, T/2, y′).

The halving sub-protocol is repeated t times, halving the time parameter T each time,

until we arrive at a claim for T = 1 at which point the verifier can efficiently check the

correctness itself by performing a single squaring.

The protocol, being public-coin, can be made non-interactive using an analogue of

the Fiat-Shamir Transform. For this, the verifier’s messages (i.e., the r’s) are computed
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P V

I = (N, x, T, y)

µ

r

I ′ = (N, x′, T/2, y′)

Figure 1.9: The halving sub-protocol between a prover P and a verifier V for T > 2 results

in a statement I turned into a new statement I ′.

by applying a hash function H to the prover’s messages. The non-interactive proof on

challenge (N, x, T ) is of the form (N, x, T, y, µ1, . . . , µt), and we denote it by π(x
T−→ y).

We point out the following four crucial properties of the protocol where λ, if you recall,

denotes the size of N in binary representation:

Property 1: Given (N, x, `, y), computing π(x
`−→ y) requires `+poly(λ) multiplica-

tions in Z∗N and poly(λ) space (if one is not given y, an additional ` multiplication

are used to first compute y = x2` , but we’ll always be in a setting where either ` = 1

or y is known).

Property 2: The size of a proof π(x
`−→ y) is poly(n, log `) bits.

Property 3: Given two proofs π(x
`−→ y), π(y

`−→ z) as “advice”, computing the proof

π(x
2`−→ z) can be efficiently reduced to computing a proof π(x′

`−→ y′). We call this

property proof-merging

An attempt using efficient proof-merging. As mentioned above, our goal is to use

Pietrzak’s protocol in order to efficiently implement a verification circuit V that, given

(v = y, i) verifies that y = x2i mod N , i.e., that y indeed lies at the i-th position on the

standard path described in (1.4). A first attempt would be to augment the vertex labels

xi = x2i mod N in (1.4) with a corresponding proof, i.e., consider the standard path

π(x0
0−→ x0)→ π(x0

1−→ x1)→ π(x0
2−→ x2)→ · · · → π(x0

T−→ xT ),

where the circuit V simply runs the efficient proof verification algorithm of Pietrzak’s

protocol. This change renders the standard path efficiently verifiable. However, it is

now not entirely clear how to implement the successor circuit S efficiently. Since the

labels now comprise of proofs, and S is consequently required to efficiently “update” a

proof π(x0
i−→ xi) to π(x0

i+1−→ xi+1). To overcome this issue, we use the ability to “merge”

proofs, in the sense that given proofs π(x
`−→ y), π(y

`−→ z) one can efficiently compute a

single proof π(x
2`−→ z).

Given the ability to merge proofs, we can construct a valid SVL instance by consid-

ering a standard path where going from the i-th vertex to the i+ 1-th vertex we augment
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the label (now consisting of multiple “partial” proofs) with a proof for the single step

π(xi
1−→ xi+1), and then merge the latest proofs as long as they are for the same time

parameter (i.e., if the last two proofs are of the form π(a
`−→ b), π(b

`−→ c) merge them into

π(a
2`−→ c)). This results in a standard path where the first few vertices are:

π(x0
0−→ x0)→ π(x0

1−→ x1)→ π(x0
2−→ x2)→ π(x0

2−→ x2)‖π(x2
1−→ x3)→

π(x0
4−→ x4)→ π(x0

4−→ x4)‖π(x4
1−→ x5)→ · · ·

where crucially the number of proofs contained in each label always remains below log T .

We remark that this construction is conceptually similar to Valiant’s construction of

general-purpose incrementally-verifiable computation. We provide a detailed comparison

below in §1.3.2.4.

Strictly speaking, Pietrzak’s proof system does not support efficient merging of proofs

as outlined above. However, it does support somewhat efficient proof-merging as in Prop-

erty 3. Our key observation is that this somewhat-efficient merging is already sufficient,

as explained next, to construct a valid SVL instance where both the successor circuit S

and verification circuit V run in poly(n) time.

Our construction via recursive proof-merging. Suppose that we could construct

an SVL instance where starting with a label x, after L(`) invocations of S (for L(·) to be

defined) we arrive at a label that contains a proof π(x
`−→ y) establishing y = x2` mod N .

Then we can get an SVL instance where starting with some label x we arrive at a proof

π(x
2`−→ z) making 3 · L(`) invocations of S. The idea is to first compute π(x

`−→ y) in

L(`) steps, then π(y
`−→ z) in another L(`) steps (while keeping the first proof π(x

`−→ y)

around in the label), and finally using another L(`) steps to recursively merge those two

proofs into π(x
2`−→ z) using Property 3. The recursive algorithm outlined above satisfies

L(2`) = 3 · L(`) steps, and as L(1) = 1, solving this recursion we get L(`) = `log 3.

Thus, x2T mod N is reached after L(T ) = T log 3 invocations of S. The above (recursive)

construction can be thought of as an incrementally-verifiable procedure [91] to compute

x2T mod N : incremental in the sense that in each step we make some progress towards the

goal of computing x2T mod N and verifiable in the sense that each step of the computation

can be validated.

Comparison with the second construction. The second construction can be viewed

as an alternative instantiation of the ideas explained above with two main differences

concerning the underlying assumptions. First, the underlying computational problem

— and therefore the hardness assumption — is different: in the second construction

we switch to the (worst-case) hardness of #P, which is weaker than our assumption

on Iterated-Squaring. Therefore, secondly, the interactive protocol underlying the

second construction needs to be switched accordingly to the Sumcheck Protocol. Note

that Pietrzak’s protocol has only logarithmic number of rounds compared to polynomial

number of rounds in the Sumcheck Protocol. Hence, it is potentially easier to instantiate

(with a concrete hash function) the Fiat-Shamir Transform for the former than the latter.

Taken together, one could argue that the two results are in some sense incomparable.
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1.3.2.3 Dealing with Imperfect Verifier

One important detail that we have totally glossed over in the above description is that

Pietrzak’s proof system is not “perfect” and therefore neither is the verifier which is built

on top of this proof system. Since the verifier is not perfect, the SVL instance that we

obtain above does not quite meet the requirements laid down in the definition of SVL

(Definition 5). In particular, there are two issues that are inherited from the proof system:

1. Since the proof system does not have perfect soundness, the verifier may accept

vertices corresponding to wrong proofs as lying on the standard path.

2. It could very well be that there are multiple correct proofs for the same statement.

That is the proofs might not be unique and therefore the proof systems might be

unambiguous.

Note that these same issues affect the construction of SVL from incrementally-verifiable

computation outlined in §1.3.2.1. We deal with this issue in two steps.

1. First, we define an imperfect version of the SVL problem. To be more precise,

we relax the promise of SVL to accept vertices that lie off the standard path and

then add these off-the-path vertices as solutions to the instance. As long as these

additional solutions are hard to find, breaking the SVL instance should still be

tantamount to finding the sink of the standard path. We remark that this almost

holds for the above proof system: it is statistically sound but does not have unique

proofs. Fortunately though by slightly changing the algebraic setting we can obtain

a proof system with statistically-unique proofs. We will formally define the new

problem, which we call Relaxed-Sink-of-Verifiable-Line (RSVL), in the next

chapter (§2.4).

2. Next, we show that RSVL is (randomised) Karp-reducible to EOL by carefully

arguing that the reduction from SVL to EOL still goes through despite the intro-

duction of additional off-the-path solutions.

1.3.2.4 Parallels with Valiant’s Construction

In [91], Valiant describes a compiler that allows carrying out any given (even exponentially-

long) computation in an incrementally-verifiable manner. Our attempt in §1.3.2.2 at con-

structing SVL instances assuming efficient merging of proofs is inspired by his approach,

which we describe next. For T ∈ N, let

C = C0 → . . .→ CT

denote the computation that we would like to carry out in an incrementally-verifiable

manner. Let’s suppose there exists a (non-interactive) proof system that allows us to prove

statements of the form Ci
`−→ Cj, i.e. Cj is obtained from Ci in ` steps of computation.
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Further, let’s assume that the proofs system supports efficient merging of proofs in the

following sense: given two proofs π(Ci
`−→ Cj) and π(Cj

`−→ Ck), we can efficiently compute

a single proof π(Ci
2`−→ Ck) that is of the same size as the original ones.

Given the ability to merge proofs, the incrementally-verifiable computation (IVC) of C

can be described inductively as follows. To increment the computation by one step from

the i-th configuration to the i + 1-th configuration, we augment the configuration (now

consisting of multiple “partial” proofs) with a proof for the single step π(Ci
1−→ Ci+1), and

then merge the latest proofs as long as they are for the same time parameter — i.e., if

the last two proofs are of the form π(Ci
`−→ Cj) and π(Cj

`−→ Ck) then merge them into

π(Ci
2`−→ Ck). This results in a sequence of configurations (with the original configurations

dropped for the sake of space):

π(C0
0−→ C0)→ π(C0

1−→ C1)→ π(C0
2−→ C2)→ π(C0

2−→ C2)‖π(C2
1−→ C3)→

π(C0
4−→ C4)→ · · · → π(C0

T/2−−→ CT/2)‖ . . . ‖π(CT−2
1−→ CT−1)→ π(C0

T−→ CT ).

Note that, crucially, the number of proofs contained in each label always remains below

log T . Therefore, if the proof system is succinct, then the blow-up in the size of the

configurations is polynomial (assuming T is at most exponential in the size of the input).

The main contribution in [91] was constructing a proof system that allows efficient

merging using a technique called recursive proof-composition. The construction in [91]

deployed strong non-interactive CS proofs of knowledge as the underlying proof system

(also known as SNARKs.), with very efficient (e.g. linear-time) knowledge extractors re-

quired to enable recursive proof-composition. Constructing such proof systems under more

standard (falsifiable) assumptions is a notoriously hard proposition [9; 46]. Constructions

usually rely on knowledge assumptions or are presented in the random oracle model. Our

assumptions, on the other hand, are comparatively milder. For our second construction,

we only assume standard (adaptive) soundness of the concrete and natural cryptographic

protocol obtained by applying the Fiat-Shamir Transform to the interactive Sumcheck

Protocol. One consequence of this distinction is that we prove our construction is sound

in the random oracle model, whereas no such proof is known for Valiant’s construction.12

We note, moreover, that in Valiant’s construction the proofs are not unambiguous,

and thus it is not clear how to use his scheme to obtain hard instances in PPAD.13

1.3.3 Organisation

In Chapter 2, we provide the prerequisite formal definitions (§2.1) and discuss in detail

some of the previous works that serve as bases for the results in Chapters 3 and 4.

12The issue is that Valiant’s proof system cannot be composed to prove statements about a non-explicit

oracle.
13A key ingredient in Valiant’s construction is a CS proof [70] obtained via a Merkel Hash applied to a

PCP. This is not unambiguous because small changes to a correct PCP string will change the proof, but

will only be noticed by the verifier with small probability. A recent work [71] has managed to construct

incrementally-verifiable PCPs, but their construction is not unambiguous either.
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In particular, we focus on the results in [12] and [56] which establish hardness in

PPAD (§2.2) and CLS (§2.3), respectively, using indistinguishability obfuscation.

We end the chapter with a section (§2.4) on the Relaxed-Sink-of-Verifiable-

Line (RSVL) problem, which will serve as our gateway to PPAD/CLS hardness

in the subsequent chapters.

In Chapter 3, we present the first of the two constructions of hard distributions of the

RSVL problem. The hardness assumption on Iterated-Squaring along with

its relevant background is described in §3.1. Our construction is inspired by an

interactive protocol from [78], which is described in detail in §3.2. The construction

itself is finally given in §3.3. There we will see how recursive proof-merging works

and we regard this to be the main technical novelty in this thesis. Most of the

content in this chapter is from [32].

In Chapter 4, we present the second construction of hard distributions of the RSVL

problem. The construction is based on the classical Sumcheck Protocol from [67],

which is described in detail in §4.2. The hardness of the construction is based on the

soundness of the Fiat-Shamir Transform for the Sumcheck Protocol. We formulate

this precisely in §4.2, and also show that it holds in the random-oracle model. The

construction itself (§4.3) also relies on recursive proof-merging and is on a high level

similar to the one in the previous chapter. Finally in §4.4, using ideas from [24],

we show that the assumption on the soundness of the Fiat-Shamir Transform holds

under strong assumptions on fully-homomorphic encryption. Most of the content in

this chapter is from [31].

We conclude with Chapter 5, where we discuss some of the avenues that could be further

explored. We also briefly mention some of the concurrent works regarding PPAD-

hardness that are pertinent to this thesis.
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2 Background

In this chapter, we explain the previous works that serve as bases for the results in

Chapters 3 and 4. In particular, we focus on the results in [12] and [56], which use

indistinguishability obfuscation (IO) to establish hardness in PPAD (§2.2) and CLS

(§2.3), respectively. We end the chapter with a section on a relaxed version of Sink-of-

Verifiable-Line (§2.4) that will serve as our gateway to PPAD and CLS hardness.

But first we recall some prerequisite formal definitions in §2.1.

2.1 Definitions

The definitions of total search problems are originally from [69] (see Footnote 3). In this

thesis we prefer to use an alternative, equivalent formulation from [56].

Definition 6 (Search problem). A search problem P consists of an efficiently-decidable

set of instances1 I ⊆ {0, 1}∗ such that for every instance I ∈ I there exists a set of

solutions SI ⊆ {0, 1}∗. On input an instance I ∈ I, an algorithm A is said to solve P if

it:

1. outputs a solution S ∈ SI ; or

2. outputs ⊥ if SI = ∅ (i.e., if no solution exists).

Next, we define the two notions of reducibility between search problems that we

use throughout: Karp-reducibility (also known as Many-One-reducibility) and Turing-

reducibility (also known as Cook-reducibility). While the definition of Turing-reducibility

is similar to that for decision problems, the definition of Karp-reducibility is slightly dif-

ferent [69]. Note that in cryptography, one usually deals with Turing reductions: given

oracle access to an adversary that breaks a cryptographic protocol, the reduction algo-

rithm breaks the cryptographic primitive. However for studying complexity classes, Karp

reductions are preferred as they capture the finer structure of problems better than Turing

reductions.

1To be formal, there exists an efficient algorithm D that when given a string I ∈ {0, 1}∗ decides (in

time poly(|I|)) whether I ∈ I.
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Definition 7 (Karp-reducibility). A search problem P is said to (polynomial-time) Karp-

reduce to another search problem P′ if there exists two polynomial-time computable

functions f and g such that

1. f maps every instance I ∈ I of P to a valid instance I ′ ∈ I ′ of P′; and

2. g maps every solution S ′ ∈ S ′I′ to the instance I ′ to a solution S := g(S ′) ∈ SI of I.

Definition 8 (Turing-reducibility). A search problem P is said to (polynomial-time)

Turing-reduce to another search problem P′ if there exists a polynomial-time Turing

machine R that solves P (as defined in Definition 6) when given oracle-access to a solver

A for P′.

Finally, we formally define a search problems and the notion of average-case hardness

that we use to study them. It is followed by the formal definition of a total search problem

and its average-case hardness, where we add the additional constraint that every instance

has a solution.

Definition 9 (FNP). A search problem is a Non-deterministic Polynomial-time (NP)

search problem if the set of solutions is efficiently-decidable: i.e., for every I ∈ I and

its associated set of solutions SI ⊆ {0, 1}poly(|I|), given a candidate solution S ∈ SI it is

decidable in polynomial time (in |I|) whether S ∈ SI . The class of all NP search problems

is called Functional Non-deterministic Polynomial-time (FNP). Alternatively, FNP can

be defined as the set of all NP search problems that are Karp-reducible to computational

SAT.

Definition 10 (Hard-on-average search problem). A search problem P is hard-on-average

if there exists an efficient instance-sampling algorithm I such that: for every efficient

adversary A, there exists a negligible function2 µ such that for every λ ∈ N

Pr
I,A

[
S ∈ SI |I ← I(1λ);S ← A(I)

]
≤ µ(λ).

Definition 11 (TFNP). A problem in FNP is total if for every instance the set of

its solutions is non-empty, i.e., for every I ∈ I: SI 6= ∅ . The class Total Functional

Non-deterministic Polynomial-time (TFNP) consists of the set of all total problems in

FNP.

Definition 12 (Hard-on-average total search problem). A search problem P is hard-on-

average if there exists an efficient instance-sampling algorithm I such that:

1. Every instance has a solution: for every λ ∈ N

Pr
I

[
SI 6= ∅|I ← I(1λ)

]
= 1.

2. For every efficient adversary A, there exists a negligible function µ such that for

every λ ∈ N
Pr
I,A

[
S ∈ SI |I ← I(1λ);S ← A(I)

]
≤ µ(λ)

In both cases, we say that I defines a hard distribution on the instances of problem P.

2Recall that a function g : N→ [0, 1] is negligible if for every polynomial p(n) ∈ poly(n) there exists

an n0 ∈ N s.t. g(n) ≤ p(n) for all n ≥ n0. g is overwhelming if 1− g is negligible.
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2.2 Hardness in PPAD

We start with a slightly different formulation of the End-of-Line problem in which the

standard unpaired vertex can be an arbitrary vertex v0. As shown in the lemma below, it

is equivalent to the original formulation [75; 12] with 0m as the standard unpaired vertex

as in Definition 4.

Definition 13. End-of-Line (EOL)

Instance.

1. A successor circuit S : {0, 1}m → {0, 1}m

2. A predecessor circuit P : {0, 1}m → {0, 1}m

3. A vertex v0 ∈ {0, 1}m

Guarantee. v0 is unbalanced: P(v0) = v0 and S(v0) 6= v0

Solution. An unbalanced vertex v ∈ {0, 1}m: P(S(v)) 6= v or S(P(v)) 6= v 6= v0

Lemma 1. Definition 4 is equivalent to Definition 13.

Proof. First, any EOL instance (S,P) where the source is 0m can be trivially transformed

to an instance (S,P, v0 = 0m). Second, we can reduce in the opposite direction by shifting

the main line by v0 as follows. Given an EOL instance (S,P, v0), define the new EOL

instance as (S′,P′) with source 0m, where S′(v) := S(v⊕ v0) and P′(v) := P(v⊕ v0), where

⊕ denotes the bitwise XOR operation.

Remark 1. Note that this general technique can be applied to any search problem where

part of the instance is some significant vertex (e.g., Pigeon, SVL).

PPAD-hardness from IO. The construction of hard distribution on EOL instances

in [12] follows the blueprint that we described in §1.3.2. That is, they proceed via the

following two steps:

1. construct hard distribution of SVL; and

2. given an SVL instance from the above distribution, simulate EOL using reversible

black pebbling.

The first step makes crucial use of indistinguishability obfuscation (IO) for circuits. Then

they use techniques from reversible computing to obtain, in a fairly generic manner, an

instance of EOL. As our constructions of hard End-of-Line instances follow a similar

blueprint, let us go through these steps in more details.
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2.2.1 Hard SVL Instances from IO

Consider the following construction of an SVL instance using a pseudorandom function

(PRF) F. For a fixed key K picked at random from the key-space of the PRF, let vi
denote its evaluation using this key at i: i.e. vi = FK(i). The SVL instance consists of a

standard path of length L = ω(poly(λ)) (for a security parameter λ) and the i-th vertex

on this path is set as (i, vi) as shown below.

(0,FK(0))→ (1,FK(1))→ (2,FK(2))→ · · · → (L− 1,FK(L− 1))→ (L,FK(L))

The verifier circuit V on input a vertex (i, v) accepts if and only if v = vi. The successor

circuit S, given as input a valid vertex (i, vi) returns (i+ 1, vi+1). Although this construc-

tion is functional, it is inherently easy to solve: to ensure functionality, the key K must

be hardwired into the successor and verifier circuits, and this allows anyone to compute

the sink.

The issue with the above construction is that there is no means to ensure functionality

without giving out the key (since a PRF is a symmetric-key primitive). This is where IO

comes to the rescue. Recall that an obfuscator (for circuits) IO takes a circuit C as input

and returns a functionally-equivalent circuit Ĉ. Now, let us reconsider the construction

described above but instead with the successor and verifier circuits obfuscated: Ŝ :=

IO(S) and V̂ = IO(V). By the completeness of IO, the functionality of the successor

and predecessor circuits is preserved. Moreover, its soundness property ensures that the

hardwired key K remains “hidden” and consequently the sink too remains hidden thanks

to the pseudorandomness of a PRF.

To formally show that the SVL instance is indeed hard, one uses the punctured pro-

gramming technique from [86] to show that one cannot distinguish the above obfuscated

circuits from their “punctured” counterparts where the standard path has been “erased”

from a random point onwards. The sink in the SVL instance defined by such circuits is

hidden information-theoretically. We refer the readers to [12] for further details.

2.2.2 Simulating the Predecessor Circuit

Given an SVL instance SVL = (S,V, L), the End-of-Line instance EOL = (S,P, v0) is

essentially simulated using reversible black pebbling, a game on directed acyclic graphs

that was introduced to model reversible computation [7]. We formally define the game

and the complexity-measure that is relevant to our discussion (i.e., space-complexity) in

Definition 14 and then proceed to explain how the actual simulation is carried out in

Lemma 2.

Definition 14. A reversible black pebbling of a directed acyclic graph G = (V , E) is a

sequence P := (P0, . . . ,PL) of pebbling configurations P` ⊆ V . Two subsequent configu-

rations differ only in one vertex and the following rule is respected in each move: a pebble

can be placed on or removed from a vertex if and only if all its parents carry a pebble.

Starting with an empty graph (i.e., P0 = ∅), the goal of the game is to place a pebble on
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the sink nodes. The space-complexity of a valid sequence P = (P0, . . . ,PL) for a DAG G

is defined as

SG(P) := max
`∈[0,L]

|P`|.

The space-complexity of a DAG G is the minimum space-complexity over all of its valid

pebbling sequences PG:

S(G) := min
P∈PG

SG(P). (2.1)

A pebbling sequence matching the space-complexity of a DAG is deemed space-optimal

for that DAG.

Lemma 2. Sink-of-Verifiable-Line is Karp-reducible to End-of-Line [1; 12].

Proof. Notice that it is easy to construct the predecessor circuit in an inefficient way. One

can simply modify the labels of the vertices to contain the entire history of the previous

steps on the SVL line. Given such labels, implementing the predecessor is easy: simply

remove the last element from the label. However, the obvious issue of this transformation

is that the size of the labels becomes eventually exponentially large which would render

the resulting circuits S and P inefficient relative to the size of the SVL instance. To

resolve this, we rely on reversible black pebbling.

For an SVL instance SVL = (S,V, L), let us consider the implicitly-defined standard

path {0m = v0, . . . , vL}, where the i-th vertex is vi := SVL.Si(v0) (see Figure 2.1). Since

the EOL instance EOL = (S,P,v0) we define, with a standard path {v0, . . . ,vL}, is

determined by the space-optimal pebbling sequence for this standard path, let us look at

this particular pebbling sequence. For simplicity, let us consider the case when the length

of the standard path is L = 2` for some ` ∈ N (as the case when L is not a power of 2

can be handled by dividing it into segments that are of length a power of 2).

There are ` pebbles that can be placed on positions indexed by positive integers. The

rules of the pebbling game from Definition 14 restricted to path graphs simplifies to: a

pebble can be placed in or removed from position i if and only if either there is a pebble

in position i− 1 or i = 1. The goal of the game is to place a pebble in position 2`− 1, the

lone sink. As shown by Chung, Diaconis and Graham [33], the optimal efficient strategy

achieves the goal of the game in a recursive manner. Their main idea is to exploit the

symmetry of the rules for placing and removing pebbles. Specifically, that it is always

possible to reverse any sequence of moves. Suppose there is a way to get to 2`−1− 1 using

only ` − 1 pebbles. Then, place an additional pebble at 2`−1. Next, free the first ` − 1

pebbles by reversing the original sequence of moves performed in the first part. Finally,

perform the same sequence starting from 2`−1. As illustrated in Figure 2.1, this strategy

will end with a pebble at position 2` − 1 while using only t pebbles.

The standard path implicit in EOL corresponds to the above pebbling sequence, and

its successor and predecessor circuits are implemented by simulating the optimal strategy

(see Figure 2.1). To be more precise, each vertex vi in EOL corresponds to a configuration

in the sequence and thus its label consists of the labels of all those vertices in SVL that

are pebbled. Subsequently, a vertex in EOL has a label representing the states of at most
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...

v0 v1 v2 v3 v4 v5 v6 v7

Figure 2.1: Simulating S and P using reversible pebbling. Each path graph above corre-

sponds to an SVL instance (v0, . . . , v7) of length 8 (with the other vertices in self-loops).

The EOL instance is determined by the space-optimal pebbling sequence for this path

graph given above.

` = log2(L) pebbles, i.e., a tuple of pairs vi := ((vi1 , i1), . . . , (vi` , i`)) where each pebble

corresponds to a pair (vi, i) where, if you recall, vi = SVL.Si(v0). (We presume that

configurations with strictly less than ` pebbles are padded accordingly.) For example, the

labels on the standard path v0, , . . . ,v27 of the EOL instance given in Figure 2.1 are:

(v0, 0)→ (v0, 0)‖(v1, 1)→ (v1, 1)→ (v1, 1)‖(v2, 2)→ . . .→ (v0, 0)‖(v7, 7)→ (v7, 7).

The rest of the tuples, that is the ones containing pairs that do not verify, become self-

loops. Therefore, the resulting instance has a unique solution, a sink that identifies a

solution to the original SVL instance.

The successor circuit for EOL now simply simulates the optimal pebbling strategy. If

the next move in the sequence involves placing a pebble, the successor EOL.S computes

the label corresponding to this vertex by invoking SVL.S and appends it to the current
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label. On the other hand, if the next move is a removal, it also simply removes the label

corresponding to this vertex. The functioning of the predecessor circuit is analogous.

The efficient pebbling strategy demonstrates that by storing only ` intermediate states

we can implement EOL.S and EOL.P that traverse the exponential SVL line from 0m

to vL = SL(0m). Note that the length of the standard path in this EOL instance is

Llog2 3 and the size of its labels is 2m · logL. In particular, every vertex corresponding to

an intermediate state of the pebbling strategy is followed by the subsequent state, and

the final step of the pebbling strategy is a self-loop under EOL.S. For a more formal

description of the reduction see [56].

2.3 Hardness in CLS

Recall that CLS consists of all problems that are Karp-reducible to Continuous-Local-

Optimum (see [36] for the formal definition). To establish average-case hardness in CLS,

however, we rely on End-of-Metered-Line (EOML) [56], a problem that is known to

lie in CLS but not known to be complete.

Definition 15. End-of-Metered-Line (EOML)

Instance.

1. A successor circuit S : {0, 1}m → {0, 1}m

2. A predecessor circuit P : {0, 1}m → {0, 1}m

3. A meter circuit M : {0, 1}m → {0, . . . , 2m}
Guarantee.

1. 0m is unbalanced: P(0m) = 0m and S(0m) 6= 0m

2. 0m is the first vertex: M(0m) = 1

Solution. A vertex v ∈ {0, 1}m satisfying one of the following:

(i) End of line: either P(S(v)) 6= v or S(P(v)) 6= v 6= 0m,

(ii) False source: v 6= 0m and M(v) = 1,

(iii) Miscount: either M(v) > 0 and M(S(v)) −M(v) 6= 1 or M(v) > 1 and

M(v)−M(P(v)) 6= 1.

The goal in EOML is the same as in EOL, but now the task is made easier as one

is also given an “odometer” circuit M. On input a vertex v, this circuit M outputs the

number of steps required to reach v from the source. Since the behaviour of M is not

guaranteed syntactically, any vertex that attests to deviation in the correct behaviour of

M also acts as a solution and thus puts End-of-Metered-Line in TFNP.

2.3.1 Reducing SVL to EOML

The approach of Bitansky et al., that was explained in the previous section, was extended

by Hubáček and Yogev [56] to CLS under the same assumptions. They observed that in
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addition to simulating the successor and predecessor circuits, the simulation of SVL using

reversible black pebbling yields a natural odometer M. Therefore, the same reduction

basically yields an EOML instance.

Lemma 3. Sink-of-Verifiable-Line is Karp-reducible to End-of-Metered-Line

[56].

Proof. The construction of the successor and predecessor circuits for the EOML instance

EOML = (S,P,M) is the same as in Lemma 2 – what is missing is the description of the

odometer circuit M. However, it can be easily implemented as follows. For every valid

pebbling configuration (i.e., a vertex that is not a self-loop), the meter EOML.M simply

outputs the number of steps taken in the pebbling strategy so far plus one (which can be

computed efficiently just from the configuration itself) and the self-loops are given value

0. Thus, the resulting End-of-Metered-Line instance (S,P,M), like the End-of-Line

instance in Lemma 2, corresponds to a graph with a single line traversing the sequence of

all the configurations visited by the optimal pebbling strategy.

2.4 Relaxing the SVL Problem

The definition of the SVL problem that we saw in Definition 5 (§2.2) is very rigid in the

sense that its verifier circuit V behaves “perfectly”. The instances that result from such

a verifier consist of a single standard path that starts at the source vertex and ending at

the sink (see Figure 1.8). The verifier attests to every vertex on this path and rejects the

ones that lie off it. In particular, this means a verifier cannot accept two different vertices

for the same index.

0000

Figure 2.2: Sample Relaxed-Sink-of-Verifiable-Line instance with 16 vertices (i.e.,

m = 4) with a standard path of length L = 6. The output of the successor circuit is

indicated by the directed edges: i.e., an edge (u, v) implies that S(v) = v. The source

(resp., sink) vertices are in red (resp., blue). The vertices that lie off the path but are

accepted by the verifier, i.e. the relaxed vertices, are in red and the paths they form are

the dashed ones. Thus, it is possible that the blue sink with the dashed incoming edge is

also accepted as the L-th vertex on the line, i.e. as a solution. The vertices rejected by

the verifier are in black.

The construction of SVL from IO (presented in §2.2.1) did have such a perfect verifier

thanks to the power of obfuscation. However, we saw in the overview of our constructions



35

(§1.3.2) that in some cases these vertices comprise of (non-interactive) proofs. To meet

the stringent requirements of the SVL verifier would require designing (non-interactive)

proof systems that are both perfectly sound (i.e., false proofs are always rejected) and

unambiguous (i.e., every statement has a unique proof). Sometimes, however, such proofs

are hard to construct or outright impossible. Instead we relax the promise involved in

SVL to accommodate imperfect proof systems via a Relaxed-Sink-of-Verifiable-

Line problem.

Definition 16. Relaxed-Sink-of-Verifiable-Line (RSVL)

Instance.

1. Length L ∈ {1, . . . , 2m}
2. A successor circuit S : {0, 1}m → {0, 1}m

3. A verifier circuit V : {0, 1}m × {1, . . . , L} → {0, 1}

Promise. For every v ∈ {0, 1}m and i ∈ {1, . . . , L}: V(v, i) = 1 if v = Si(0m).

Solution. One of the following:

(i) The sink: a vertex v ∈ {0, 1}m such that V(v, L) = 1; or

(ii) False positive: a pair (v, i) ∈ {0, 1}m×{0, . . . 2m} such that v 6= Si(0m)

and V(v, i) = 1.

The main difference from Definition 5 is that the promise about the behaviour of the

verifier circuit V is relaxed so that it can also accept vertices off the standard path: the

promise is relaxed from an iff to an if. However, any vertex off the main line accepted by

V is an additional solution, a false positive. Consequently, for the SVL instance to remain

hard, these off-the-path vertices need to be computationally-hard to find. In Lemma 4

we show that despite the relaxed promise, RSVL reduces to EOML and therefore con-

structing hard distributions of EOML is reduced to constructing hard distributions of

RSVL.

Lemma 4. Relaxed-Sink-of-Verifiable-Line is (randomised) Karp-reducible to End-

of-Metered-Line.

Proof. The proof of the lemma follows by inspection of the reductions from SVL to EOL

(Lemma 2) and SVL to EOML (Lemma 3). Let RSVL = (S,V, L) be an RSVL instance.

Let’s consider the End-of-Metered-Line instance EOML = (S,P,M) obtained by ap-

plying the reduction in Lemma 3 to this RSVL instance. (Recall that the length of the

standard path in this EOML instance is Llog2 3 and the size of its labels is 2m · logL.)

The main issue is that due to the relaxed guarantee, we might have introduced additional

solutions besides the sink corresponding to vL = RSVL.SL(0m). We argue that any such

solution will correspond to a false positive in the RSVL instance. To this end, we claim

that EOML has the following properties.

1. Every vertex v is labeled by a tuple of ` = log2(L) pairs of the form (v, i) ∈
{0, 1}m × {1, . . . , L}.
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2. Every vertex v that is not a self-loop (i.e., with EOML.S(v) 6= v or EOML.P(v) 6= v)

contains in its label only pairs (v, i) ∈ {0, 1}m×{1, . . . , L} such that RSVL.V(v, i) =

1 and is given a non-zero value by EOML.M.

3. A vertex v lies on the main directed line starting at the standard source correspond-

ing to the initial pebbling configuration if and only if it contains in its label only

pairs (v, i) ∈ {0, 1}m × {1, . . . , L} such that v = RSVL.Si(0m).

Items 1 and 2 are immediate from the description of the reduction. Item 3 follows since

any vertex v which is not a self-loop corresponds to a valid pebbling configuration. Thus, if

the label of v contains only pairs (v, i) ∈ {0, 1}m×{1, . . . , L} such that v = RSVL.Si(0m)

then the successor (resp. predecessor) of v on the main directed EOML line is the

successive (resp. preceding) pebbling configuration. Note that the converse implication

is straightforward.

Consider any vertex v that is a solution (of any type from Definition 15) to EOML.

If the label of v contains a pair of the form (v, L) then we have found a solution to the

relaxed SVL instance. By Item 2, RSVL.V(v, L) = 1 and either v is the sink of the RSVL

instance (when v = RSVL.SL(0m)) or (v, L) is a false positive (when v 6= RSVL.SL(0m)).

Otherwise, we show that the solution v must contain a false positive in its label.

First, notice that there are no other solutions on the main directed line besides the sink

containing (vL, L) in its label (this sink falls into the previous case we already handled).

Therefore, v lies off the main standard path and, by Items 2 and 3 above, its label must

contain a pair (v, i) such that RSVL.V(v, i) = 1 but v 6= RSVL.Si(0m), i.e., a false positive.

Since there are log2(L) such pairs in the label, we can select the false positive (v, i) with a

noticeable probability simply by picking one of the pairs in the label uniformly at random

(rendering it a randomised Karp reduction).
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3 PPAD-Hardness from Iterated-Squaring

In the previous chapter, we saw how the task of constructing hard distribution of End-of-

Line reduces to constructing a hard distribution on the Relaxed-Sink-of-Verifiable-

Line (RSVL) problem. In this chapter, we formally present our first construction of hard

distribution of RSVL. The hardness of the construction, if you recall, is in the random

oracle model under an assumption on Iterated-Squaring (IS). The exact hardness

assumption along with its relevant background is described in §3.1. Since our construction

is inspired by the interactive protocol for the decision version of IS given in [78], we

describe it in detail in §3.2. The construction of the RSVL instance is finally given in

§3.3, and there we also explain the notion of recursive proof-merging which constitutes

the main technical novelty in this thesis.

3.1 Hardness Assumption

We begin this section with the Rivest, Shamir and Wagner (RSW) time-lock puzzle and

the hardness assumption that underlies its security (Assumption 1). Then, in §3.1.2,

we describe the weaker assumption (Assumption 2) sufficient for the hardness of our

construction.

3.1.1 The RSW Time-Lock Puzzle

Rivest, Shamir and Wagner [84] introduced the notion of time-lock puzzles. Such a puzzle

is specified by a sampling algorithm sample which, on input a security parameter λ ∈ N
and a time parameter T , outputs a puzzle instance I and the corresponding solution S.

The solution S can be computed given only the puzzle I making T simple sequential

steps. The security property requires that even an adversary with poly(λ) parallelism

cannot compute the solution much faster than the honest (sequential) algorithm. They

also propose a simple and elegant construction, described below.

On input (λ, T ), a puzzle is sampled by choosing two random λ/2-bit primes p, q,

which define a λ-bit modulus N = pq, together with any x ∈ Z∗N .1 The puzzle and

1Strictly speaking, a construction with security parameter λ is supposed to guarantee λ-bits of security

i.e., it should ideally take an adversary O(2λ) computation to solve the construction using the best

known attacks. Therefore, we should really be describing our constructions in terms of two parameters:
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solution are then defined as

I = (N, x, T ), S = f(N, x, T ) = x2T mod N.

Let’s call this problem Iterated-Squaring (IS). The solution to IS be efficiently

computed by the puzzle sampling algorithm in two steps using the knowledge of the

group order φ(N) = (p− 1)(q − 1) as

e = 2T mod φ(N), S = xe mod N. (3.1)

It is conjectured in [84] that the fastest way to solve IS (without the knowledge of the

group order) is through repeated squaring:

x→ x2 → x22 → x23 → . . .→ x2T (mod N). (3.2)

In particular, parallelism (beyond what can be used to speed up a single squaring) does

not allow to compute the solution any faster. In other words, IS is an inherently-sequential

computational problem. Below we state this conjecture explicitly: we use “running time”

to denote the total computation of an algorithm, while actual clock time of a computation

is referred to by “sequential time”. For instance, if the algorithm is given as a circuit,

then the running time would depend on its size, whereas the sequential time only on its

depth.

Assumption 1. For a security parameter λ ∈ N, let N be the product of two random

λ/2-bit primes and x ∈ Z∗N be sampled uniformly at random. For any T ∈ N and any

algorithm A (whose running time is significantly smaller than what is required to factor N)

that, on input (N, x, T ), outputs y = x2T mod N with overwhelming probability, requires

sequential time not much less than what is required to compute T sequential squarings

in Z∗N [84].

3.1.2 Our Number-Theoretic Assumption

The hardness result in this chapter is based on a weaker assumption where we just require

that for some superpolynomial T , (a variant of) IS cannot be solved in polynomial time.

The exact algebraic setting for our assumption, as formally stated in Assumption 2,

differs slightly from that in Assumption 1. First, we require the primes p, q that define

the modulus N to be safe primes (where, recall that, p is safe if (p− 1)/2 is also prime).

Second, the group that we assume our hardness is the group of signed quadratic residues

(defined below), which carries slightly more structure than Z∗N – this extra structure

helps guarantee unambiguous soundness in Pietrzak’s protocol (cf. §3.2.2 for the details).

However, we justify in Remarks 2 and 4 below why these changes do not really affect the

strength of the assumption.

a (proper) security parameter λ and the bit length λRSA ∈ poly(λ) of the modulus N that corresponds

to λ-bits of security. For instance, for 128-bit security the size of the modulus should be around 2048

bits. However, in the chapter we will use λRSA as the security parameter λ to avoid cluttering. Morevoer,

since λ and λRSA are polynomially-related it suffices for our purposes as we work with asymptotic security

(rather than concrete security).
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Signed quadratic residues. For two safe primes p and q, and N := p · q the signed

quadratic residues [42; 54] is defined as the group

QR+
N := {|x| : x ∈ QRN},

where |x| is the absolute value when representing the elements of Z∗N as{
−N − 1

2
, . . . ,

N − 1

2

}
. (3.3)

Since −1 ∈ Z∗N is a quadratic non-residue with Jacobi symbol +1, the function |·| acts

as an (efficiently-computable) isomorphism2 from QRN to QR+
N , and as a result QR+

N is

also a cyclic group, with the group operation defined as

a ◦ b := |a · b mod N |.

However, unlike for QRN , membership in QR+
N can be efficiently tested since QR+

N = J+
N

where JN is the group of elements with Jacobi symbol +1 and

J+
N := {|x| : x ∈ JN} = JN/{±1}.

In other words, to test whether a given x ∈ Z∗N (represented as in eq.(3.3)) belongs also

to QRN+, ensure that x ≥ 0 and that its Jacobi symbol is +1.

3.1.2.1 The Assumption

The hardness assumption that underlies the RSVL instance proposed in this chapter is

stated below. It pertains to the Iterated-Squaring problem in the setting of signed

quadratic residues, which we denote by Iterated-Squaring+ (IS+) to avoid conflation.

Assumption 2. For a security parameter λ, let N = p · q be the product of two random

λ/2-bit safe primes p, q and x ∈ QR+
N be sampled uniformly at random. There exists

some T = λω(1), T ≤ 2λ, such that no poly(λ)-time algorithm, on input (N, x, T ), can

output x2T ∈ QR+
N except with non-negligible probability.

Remark 2 (On using safe primes). The primes p and q in Assumption 2 are safe primes

to make sure that QR+
N contains no sub-group of small order – this property is exploited

later to prove statistical soundness of the proof system in the next section.

It is conjectured that for some constant c, there are c·2λ/λ2 safe λ-bit primes (cf. [92]),

so a random λ-bit prime is safe with probability≈ c/λ. Under the weaker requirement that

there are at least 2λ/poly(λ) λ-bit primes for some polynomial in poly(λ), Assumption 1

is at least as strong as an assumption where we additionally require p and q to be safe, since

if a Θ(1/poly(λ)) fraction of all λ-bit primes is safe, an N sampled as in Assumption 1

will be the product of two safe primes with noticeable probability Θ(1/poly(λ)2).

2Note, however, that the inverse of this isomorphism is hard to compute exactly because of the

quadratic residuosity assumption.
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Remark 3 (Using other groups and operations). One can prove soundness of the protocol

also when a standard RSA modulus is used (i.e., p and q are just random primes), or in fact

any other group, but then one needs a computational assumption to argue soundness of the

protocol, namely, that it is hard to find elements of small order [15; 93]. So the hardness

of our RSVL instance would rely on hardness of computing x2T as in Assumption 2,

and additionally on the hardness of finding some element z where ze = x for some e of

polynomial size.

We also note that instead of computing x2T , one can use the function xe
T

for any e

for which xe can be computed efficiently given x and e.

Remark 4 (On assumption in (Z∗N , ·) vs. (QR+
N , ◦)). Although Assumption 2 concerns the

hardness of exponentiation with respect to (QR+
N , ◦) (compared to Assumption 1 which

applies to hardness of exponentiation modulo N), we explain below why restricting to

QR+
N can only make the assumption milder. We argue in two steps using the assumption

in QRN as the intermediate step. To be specific, first we show that since QRN is a

subgroup of Z∗N of sufficiently large size, Assumption 2 in QRN is at least as strong (Step

(i)); then, we exploit the isomorphism between QRN and QR+
N to argue that if one breaks

the assumption in QR+
N then one can break the assumption also in QRN (Step (ii)).

Step (i) As |QRN | = |Z∗N |/4, a random element in Z∗N also belongs to QRN with proba-

bility 1/4. Thus the reduction, on challenge x ∈ Z∗N , just invokes the algorithm

A that breaks the assumption in QRN on x, and is guaranteed to succeed at

least a fourth of the time A succeeds.

Step (ii) Consider any x ∈ QRN and y := x2T mod N . By the properties of the isomor-

phism, the image of y in QR+
N is y′ = |x|2

T

mod N = x2T ∈ QR+
N . Thus given

y′ we know that y ∈ {y′, N − y′} is one of two possible values. Although the

exact value cannot be computed (as it would contradict the quadratic residu-

osity assumption), we can guess one of the two values. Thus the assumption

in (QR+
N , ◦) is as strong as the assumption in (QRN , ·).

Remark 5 (On the range of T ). Note that we allow T to be any superpolynomial value.

Even though it seems that computing x2T mod N only can get harder as T increases, we

cannot actually prove this. Therefore, instead of just setting T = 2λ, we allow T to take

any value to ensure Assumption 2 really is weaker than Assumption 1.

Let us observe that if T is the product of all λ/2-bit primes, then computing x2T mod N

is actually trivial as (using T mod φ(φ(N)) = 0 below)

x2T mod N = x2T mod φ(N) mod N = x2T mod φ(φ(N)) mod φ(N) mod N = x mod N.

As this T is doubly exponentially large (while we require T ≤ 2λ) this is not a valid

choice, but this observation indicates why showing that computing x2T only gets harder

as T increases might be tricky.

Before moving on the proof system, we point out some properties of the set of genera-

tors of the quadratic residues. This will prove useful later in establishing hardness of the

RSVL instance proposed in §3.3 (Claim 1.2 in Theorem 1).
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Generators of QR+
N . Let’s denote by QR?

N ⊂ QR+
N the set of generators of QR+

N :

QR?
N =

{
x ∈ QR+

N : 〈x〉 = QR+
N

}
.

If N = p · q = (2p′ + 1)(2q′ + 1) is the product of λ/2-bit safe primes, then we have

|QRN | =
∣∣QR+

N

∣∣ = p′ · q′ and |QR?
N | = (p′ − 1)(q′ − 1) = p′ · q′ − p′ − q′ + 1 .

Our first observation is that a random element in QR+
N almost certainly also belongs to

QR?
N :

Pr
x←QR+

N

[x ∈ QR?
N ] = 1− p′ + q′ − 1

p′ · q′
≥ 1− 1

2λ/2−2
. (3.4)

Looking ahead, we will only be able to prove soundness of the protocol for statements

(N, x, T, y) if x ∈ QR?
N . Although we can efficiently check if some x is in QR+

N , we cannot

efficiently check if it also belongs to QR?
N (without knowing the factorization of N). But

as a consequence of the above observations, an x chosen at random from QR+
N is almost

certainly also in QR?
N .

Secondly, since the squaring function is an automorphism3 of QR+
N (and also QRN)

x ∈ QR?
N implies x2 ∈ QR?

N . As a result, starting with any x ∈ QR?
N , repeated squaring

generates a subset of QR?
N : i.e., for any x ∈ QR?

N we have{
x, x2, x22 , x23 , . . . , x2(p

′−1)(q′−1)−1

= x
}
⊆ QR?

N . (3.5)

3.2 Pietrzak’s Proof System

The key component of our construction is Pietrzak’s interactive protocol [78] for the

decision version of Iterated-Squaring+, i.e. showing that a tuple I = (N, x, T, y)

satisfies y = x2T over QR+
N . There, the motivation was to construct a so-called “verifiable

delay function” [15]. The protocol we use in this work differs in some minor aspects from

the one in [78]. These changes we introduce make the proof system less efficient but

enable a cleaner description — see Remark 7 for further details. But first, we formally

introduce the different notions of proof systems. In particular, we define unambiguous

proof systems from [83], which formalises the uniqueness property that is crucial for our

constructions.

3.2.1 Proof Systems

Interactive protocols. An interactive protocol (see Figure 1.7.(a)) consists of a pair

(P,V) of interactive Turing machines that are run on a common input I. The first ma-

chine, which is deterministic, is called the prover and is denoted by P, and the second

machine, which is probabilistic, is called the verifier and is denoted by V. In an `-round

3Note that (a ◦ b)2 = (a ◦ b) ◦ (a ◦ b) = (a ◦ a) ◦ (b ◦ b) = a2 ◦ b2, and since ·2 is a permutation on QR+
N

– or on QRN as originially shown by Blum [14] – it is an automorphism.
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interactive protocol, in each round i ∈ [`], first P sends a message αi ∈ Σa to V and then

V sends a message βi ∈ Σb to P, where Σ is a finite alphabet. At the end of the in-

teraction, V runs a (deterministic) Turing machine on input (I, (β1, . . . , β`), (α1, . . . , α`)).

The interactive protocol is public-coin if βi is a uniformly distributed random string in

Σb. The communication complexity of an interactive protocol is the total number of bits

transmitted, namely, (` · (b+ a) · log2(|Σ|)).

Interactive proofs (IPs). The classical notion of an interactive proof for a language

L is due to Goldwasser, Micali and Rackoff [52].

Definition 17. An interactive protocol (P,V) is a δ-sound interactive proof (IP) for L if:

• Completeness: For every I ∈ L, if V interacts with P on common input I, then V

accepts with probability 1.

• Soundness: For every I /∈ L and every (computationally-unbounded) cheating

prover strategy P̃, the verifier V accepts when interacting with P̃ with probability

less δ(|I|), where δ = δ(n) is called the soundness error of the proof system.

Unambiguous IPs. Reingold, Rothblum and Rothblum [83] introduced a variant of

interactive proofs, called unambiguous interactive proofs, in which the honest prover

strategy is defined for every I (i.e., also for I /∈ L) and the verifier is required to re-

ject when interacting with any cheating prover that deviates from the prescribed honest

prover strategy at any point of the interaction. Therefore, one can think such interactive

protocols as having a “unique” execution.

More formally, if (P,V) is an interactive protocol, and P̃ is some arbitrary (cheating)

strategy, we say that P̃ deviates from the protocol at round i∗ if the message sent by P̃

in round i∗ differs from the message that P would have sent given the transcript of the

protocol thus far. In otherwords, if the verifier sent the messages β1, . . . , βi∗−1 in rounds

1, . . . , i∗ − 1 respectively, we say that P̃ deviates from the protocol at round i∗ if

P̃ (I, i∗, (β1, . . . , βi−1)) 6= P (I, i∗, (β1, . . . , βi−1)) .

We consider a slightly different formulation, where the unambiguity is required to

hold only for I ∈ L. Therefore for I /∈ L, we need to reinstate the standard soundness

condition.

Definition 18. An interactive protocol (P,V), in which we call P the prescribed prover,

is a (δ, ε)-unambiguosly sound IP for L if the following three properties hold:

• Prescribed Completeness: For every I ∈ {0, 1}∗, if V interacts with P on common

input I, then V outputs L(I) with probability 1.

• Soundness: For every I /∈ L and every (computationally-unbounded) cheating

prover strategy P̃, the verifier V accepts when interacting with P̃ with probability

less than δ(|I|), where δ = δ(n) is called the soundness error of the proof system.
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• Unambiguity: For every I ∈ L, every (computationally-unbounded) cheating

prover strategy P̃, every round i∗ ∈ [`], and for every β1, . . . , βi∗−1, if P̃ first de-

viates from the protocol in round i∗ (given the messages β1, . . . , βi∗−1 in rounds

1, . . . , i∗−1 respectively), then at the end of the protocol V accepts with probability

at most ε(|I|), where the probability is over V’s coin tosses in rounds i∗, . . . , `.

An IP is simply δ-unambiguosly sound if ε = δ.

Non-interactive proof systems. A non-interactive proof system involves the prover

sending a single message to the verifier. To give this proof system additional power4, we

assume that both prover and verifier have access to a common reference string (CRS).

When the CRS is simply a uniformly random string, it is referred to as a common random

string. We focus on adaptive proof systems where a cheating prover gets to see the CRS

before forging a proof for a statement of its choice. As for the case of interactive proofs,

we consider unambiguous non-interactive proof systems (instead of the standard “sound”

non-interactive proof systems).

Definition 19. A pair of machines (P,V), where P is the prescribed prover, is a (δ, ε)-

unambiguosly sound adaptive non-interactive proof system for a language L if V is prob-

abilistic polynomial-time and the following three properties hold:

• Prescribed Completeness: For every I ∈ {0, 1}∗,

Pr
R

[V(I,P(I, R), R) = L(I)] = 1.

• Soundness: For every (computationally-unbounded) cheating prover strategy P̃,

Pr
R

[
V(I, π̃, R) = 1|(I, π̃)← P̃(R), I /∈ L

]
≤ δ(|I|).

• Unambiguity: For every (computationally-unbounded) cheating prover strategy

P̃,

Pr
R

[
V(I, π̃, R) = 1|(I, π̃)← P̃(R), π ← P(I, R), π̃ 6= π, I ∈ L

]
≤ ε(|I|).

A non-interactive protocol is simply δ-unambiguosly sound if ε = δ.

Remark 6. A non-interactive proof system is called an argument if the soundness and

unambiguity properties hold only against computationally-bounded (i.e., polynomial in

the size of the instance) cheating prover strategy P̃.

4It was shown in [73] that a non-interactive protocol without a CRS exists only for trivial languages,

i.e. those in BPP.
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3.2.2 The Interactive Protocol

We describe here the interactive protocol from [78] for the decision version of IS+, i.e., it

allows a prover to convince a verifier that a tuple I = (N, x, T = 2t, y) satisfies the relation

y = x2T in the group QR+
N (i.e., here x2 := x ◦ x) using log T rounds of interaction. In

the first step, the prover sends the midpoint µ = x2T/2 as a commitment to the verifier.

Note that if x2T/2 = µ and µ2T/2 = y are both true, so is the original claim y = x2T .

At this point we have reduced the task to prove a statement for time parameter

T to proving two statements I1 := (N, x, T/2, µ) and I2 := (N,µ, T/2, y) for time pa-

rameter T/2. Next, the verifier merges these two statements into a single statement

I ′ := (N, x′, T/2, y′) by computing a random linear combination: using the challenge r it

computes x′ := xr ◦ µ and y′ := µr ◦ y.

One can show that with overwhelming probability over the choice of r the following

holds: if the original statement was wrong, i.e., x2T 6= y, so will the new one, i.e.,

x′2
T/2

6= y′. This constitutes the halving sub-protocol: see Figure 1.9. This sub-protocol

is now repeated log T times, halving the time parameter every time, until we arrive at a

claim for T = 1 at which point the verifier can efficiently check correctness without the

help of the prover by making one squaring.

3.2.2.1 Removing Interaction

The interactive proof system just outlined is public-coin and has an exponentially-small

soundness error, which means we could make it non-interactive using the Fiat-Shamir

methodology [40]. However, this is known to be sound in the random-oracle model

for constant-round interactive protocols, unlike the proof system above which involves

O(log T ) rounds of interaction.5 Nonetheless, it was shown in [78] that a close analogue

of the Fiat-Shamir Transform does yield a non-interactive protocol that is sound in the

random-oracle model. In particular, to remove interaction, we derive verifier’s message

(i.e., the r’s) in each round by applying a hash function H : {0, 1}∗ → {0, 1}3λ to the

prover’s message for that round — the range of H (thought of as Z23λ) is chosen to be suf-

ficiently large so that H(·) mod p′q′, when H is modelled as a random oracle, is extremely

close to uniform over Zp′q′ . As a result, we get a non-interactive proof system (also with

exponentially-small soundness error) for the statement “(N, x, T, y) satisfies y = x2T in

QR+
N”.

5In [40] the assumption that the transform is sound was made for constant-round protocols. It was later

shown in [79] that this transformation is sound when H is instantiated with a random oracle. However,

there are examples of non-constant round interactive protocols that are unsound when the Fiat-Shamir

methodology is applied, even in the random-oracle model. One simple counter-example is to consider the

sequential composition, say n times, of a constant-round protocol that has constant soundness error. By

amplification theorem, the resultant protocol has negligible soundness error — inverse-exponential in n

to be precise — but the Fiat-Shamir Transformed protocol is totally insecure as argued next. Since the

soundness error is constant a malicious prover can basically sample (in constant number of attempts in

expectation) “favourable” messages for each round and with high probability come up with a cheating

proof.
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A number of recent works have aimed at relaxing the assumptions under which the

Fiat-Shamir Transform can be proved sound [61; 59; 26]. In particular, [26] shows that for

statistically-sound protocols, exponentially-hard key-derivation mechanism implies that

Fiat-Shamir is sound. They also construct such KDMs under some strong assumptions

related to learning with errors and the discrete-logarithm problem. Therefore, one could

potentially argue the soundness above under much weaker assumptions than random

oracles or indistinguishability obfuscation. We see such an instantiation for our second

construction in §4.4.

Remark 7 (Comparison with [78]). We have introduced a few changes to make the proof

system simpler at the cost of efficiency. We are able to employ these changes, listed below,

as concrete efficiency is not the focus of our work — i.e., we only require the circuits S

and V in our RSVL instance to be of polynomial size.

1. The range of the hash function H is much larger in this work than in [78]. This

allows us to argue that xH(·) mod N is close to uniform.

2. The prover described above uses the minimum space necessary, even though ad-

ditional space can significantly improve the efficiency of the computation of the

proof.

3. It suffices for us to consider a time parameter of the form T = 2t — the original

protocol is described for arbitrary T .

4. We iterate the protocol until the parameter T = 2t, which is halved in every round,

is down to 1, even though it is more efficient to stop at an earlier round. In other

words, the base proof in our case is of time parameter 1, whereas it was greater than

that in [78].

3.2.3 The Non-interactive Protocol

We describe here in full detail the non-interactive protocol (PPP,VPP) that results from the

discussion in the previous section. (The subscript indicates that it is a part of Pietrzak’s

protocol and is introduced to avoid confusion with the successor and verifier circuits

of the RSVL instance we build from it.) This protocol will serve as the basis for our

main construction of Relaxed-Sink-of-Verifiable-Line in §3.3. Also described is

the simple algorithm SPP that computes the solution (and is identical to the solver of the

RSW time-lock puzzle).

• Computing the solution, SPP. The algorithm SPP on input (N, x, T ) ∈ N×QR+
N ×N

computes and outputs x2T by T sequential squaring of x. Note that the first element

N ∈ N of the input defines the domain QR+
N of the subsequent element.
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• Computing the proof, PPP. The algorithm PPP on input (N, x, T = 2t, y) ∈ N ×
QR+

N ×N×QR+
N computes a proof for the claim x2T = y as follows. Let (x1, y1) =

(x, y) and for i = 1, . . . , t recursively compute:

µi := x2T/2
i

i ∈ QR+
N

ri := H(µi, xi, yi, T/2
i−1)

xi+1 := xrii ◦ µi
yi+1 := µrii ◦ yi.

Then PPP(N, x, T, y) outputs the proof

π(x
T−→ y) = (N, x, T, y,µ) ∈ N×QR+

N × N×QR+
N × (QR+

N)t, (3.6)

where µ denotes µ1, . . . , µt.

• Verifying a proof, VPP. The verification algorithm VPP on input a purported proof

π̃(x
T−→ y) =: (N, x, T, y,µ) first checks that x, y and all µi are in QR+

N — if this

check fails VPP(π̃(x
T−→ y)) outputs 0. Otherwise let (x1, y1) = (x, y) and then for

i = 1, . . . , t compute:

ri := H(µi, xi, yi, T/2
i−1)

xi+1 := xrii ◦ µi
yi+1 := µrii ◦ yi.

The output of VPP(π̃(x
T−→ y)) is 1 if x2

t+1 = yt+1 and 0 otherwise.

Notation. We end our description with a comment on notation that will be used further

in this chapter: we reserve

π(x
T−→ y) := PPP(N, x, T, x2T )

to denote honestly computed proofs for true statements, and π̃(x
T−→ y) for any string that

parses as a possible proof, i.e., starts with N, x, T, y and is in N×QR+
N × N×QR+

N .

3.2.4 Unambiguous Soundness

The unambiguous soundness of the proof system (PPP,VPP) can be shown in the random-

oracle model assuming that an adversary never finds a “bad query” as defined in Defini-

tion 20. To be precise, we first argue that these bad queries are hard to find provided that

the adversary is allowed bounded number of queries to the random oracle (Lemma 5);

conditioned on the adversary not making a bad query, we prove that unambiguous sound-

ness is hard to break in the statistical sense (Lemma 6). It follows that the proof system

has statistically-unique proofs.
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Definition 20 (Bad query). A query is a tuple (µ, x, y, T ) where µ, x, y ∈ QR+
N and

T ∈ N. Let

r := H(µ, x, y, T ), x′ := xr ◦ µ and y′ := µr ◦ y.

We say the query (µ, x, y, T ) is bad if x ∈ QR?
N and moreover either

(i) x′ 6∈ QR?
N ; or

(ii)
(
x2T 6= y or µ 6= x2T/2

)
and x′2

T/2

= y′.

Lemma 5 (Bad queries are hard to find). For any N = p ·q where p = 2p′+1, q = 2q′+1

are λ/2-bit safe primes, the following holds: any adversary that makes at most Q queries

to the random oracle H will make a bad query with probability at most 3 ·Q/2λ/2−1

The proof of Lemma 5 is a straightforward adaptation of [78, Lemma 1] to the setting

of QR+
N . We provide it in §A.1 in the appendix for the sake of self-containment. As a

corollary of Lemma 5 we get a strong soundness guarantee for the proof system. It not

only states that it is hard to find proofs for wrong statements, but it is even hard to find

any accepting proofs that differ from honestly generated proofs for true statements.

Lemma 6 (Unambiguous Soundness). For any N = p · q where p = 2p′ + 1, q = 2q′ + 1

are (λ/2)-bit safe, no adversary that makes at most Q queries to the random oracle H

(but is otherwise computationally-unbounded) will find a proof π̃(x
T−→ y) where

• x ∈ QR?
N (we let the adversary choose T and x, but require x to be in QR?

N).

• VPP(π̃(x
T−→ y)) = 1 (proof verifies)

• π(x
T−→ x2T ) 6= π̃(x

T−→ y) (proof is different from an honestly generated proof for a

true statement)

except with probability ≤ 3 ·Q/2λ/2−1.

Proof. Let break denote the event that an adversary that makes at most Q queries to the

random oracle finds a proof π̃(x
T−→ y) such that VPP(π̃(x

T−→ y)) = 1 and π(x
T−→ x2T ) 6=

π̃(x
T−→ y). If bad denotes the event that a bad query is made, the probability of break

can be bounded as follows:

Pr[break] = Pr[break ∧ (bad ∨ ¬bad)]

≤ Pr[break ∧ bad] + Pr[break ∧ ¬bad]

= Pr[break|bad] · Pr[bad] ≤ 3 ·Q/2λ/2−1

Note that Pr[break∧¬bad] = 0 since if no bad queries were made then the proof π̃(x
T−→ y)

must equal π(x
T−→ x2T ).
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3.2.5 Efficiency

Finally, we point out three properties concerning the efficiency of (PPP,VPP). In particular

Property 3, which allows for a somewhat-efficient merging of two proofs, will be absolutely

crucial in our construction of hard RSVL instance that follows next in §3.3.

Property 1 (Cost of computing solutions and proofs). The computational cost incurred

to compute x2T := SPP(N, x, T ) is T + poly(λ) multiplications in (QRN , ◦). The com-

putational cost incurred to compute π(x
T−→ y) := PPP(N, x, T, y) is also T + poly(λ)

multiplications in (QRN , ◦). The space required is poly(λ) in both cases.

To see this, note that the cost of computing PPP(N, x, T, y) is dominated by computing

the µi’s, which requires T/2 squarings for µ1, T/4 for µ2 etc., for a total of T−1 squarings.

Property 2 (Size of the proof). The size of a proof π(x
T−→ y) is O(λ · log T ) bits.

Property 3 (Cost of merging proofs). Given two proofs π(x
T−→ y), π(y

T−→ z) as “advice”,

computing the proof π(x
2T−→ z) can be efficiently reduced to computing a proof π(x′

T−→ y′).

This property emerges from the recursive nature of the protocol: we can completely

avoid computing the µ1 component in the proof π(x
2T−→ z) = (N, 2T, x, z, µ1, µ2, . . . , µt+1)

since it is already present in π(x
T−→ y) in the form of the element y (i.e., µ1 = x2T = y).

That is, to compute π(x
2T−→ z) given π(x

T−→ y) and π(y
T−→ z), we first compute the merged

statement

r := H(y = µ1, I, z, 2 · T ), x′ := xr ◦ y, y′ := yr ◦ z (3.7)

and then, making T + poly(λ) multiplications, compute its proof

π(x′
T−→ y′) = (N, x′, T, y′, µ′1, . . . , µ

′
t) := PPP(N, x′, T, y′).

From the proof for the merged statement, we can reconstruct the proof for π(x
2T−→ z) as

(N, 2T, x, z, µ1, µ
′
1, . . . , µ

′
t). (3.8)

3.3 The Reduction

To construct a hard distribution of RSVL instances, we rely on the hardness of computing

x2T in the group QR+
N as stated in Assumption 2. In particular, we aim to construct an

efficient successor circuit S such that applying it iteratively to the initial state (x, . . .)

we reach a (final) state (x2T , . . .). Meanwhile, every intermediate state can be efficiently

certified to lie on the line using the verifier V — in order to construct such a V, we intend

to use Pietrzak’s proof system for certifying y = x2T just described in §3.2.

We sketch in §3.3.1 why some simple approaches do not work. The reader, however,

can skip these and directly jump to §3.3.2 where we discuss the solution using Property 3.

But first, we fix some notation that will be used throughout this section.
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Notation. Let Σ be an alphabet (we will use the binary {0, 1} and ternary [2] alpha-

bets). Σt denotes the set of all strings of length t over Σ; Σ≤t denotes ∪j∈[t]Σ
j (with the

empty string denoted by ε). For a string a ∈ Σt and j ∈ [t], a[j] refers to the j-th symbol

in a. For two strings a and b, ab represents their concatenation.

We address each node of a complete binary tree of depth t using the binary string that

naturally encodes its position — i.e., a node at level l ∈ [t] is encoded by an l-bit string

and, e.g., the root is ε, its children 0, 1 and so on. An analogous system is used for the

complete trinary tree (cf. Figure 3.2).

Finally, we reserve “nodes” to refer only to the vertices of a tree, to avoid conflation

with the vertices of the RSVL instance.

3.3.1 Intuition

We consider SVL or RSVL instances where (N, x, T ) is first sampled as in Assumption 2.

Inefficient verifier circuit. The first idea is to sample an SVL instance as (S,V, T, x)

where

V((y, i), j) = 1 ⇐⇒ j = i, i ≤ T and y = x2i

S((y, i)) =

{
(y, i) if i ≥ T

(y2, i+ 1) otherwise

The only way to solve this instance is to find the end of the line (x2T , T ), which under

Assumption 2 is hard. Unfortunately without knowing the group order φ(N) we cannot

realize V efficiently as computing x2i requires i squarings.

Inefficient successor circuit. To allow efficient verification, we can replace the state

(x2i , i) with a proof π(x
i−→ y) establishing that y = x2i . That is, for xi := x2i , we consider

an RSVL instance (S,V, T, π(x0
0−→ x0)) where S and V are defined as

V(π̃(x0
i−→ y), j) = 1 ⇐⇒ j = i, i ≤ T and VP(π̃(x0

i−→ y)) = 1

S(π̃(x0
i−→ y)) =


π̃(x0

i−→ y) if V(π̃(x0
i−→ y), i) = 0 or i = T

π(x0
i+1−→ xi+1) else if π̃(x0

i−→ y) = π(x0
i−→ xi)

unspecified otherwise.

Using soundness as stated in Lemma 6, we can argue that an adversary making a poly(λ)

number of oracle queries will not be able to find a wrong accepting proof π̃(x0
i−→ y), i.e.,

π̃(x0
i−→ y) 6= π(x0

i−→ xi) : VP(π̃(x0
i−→ y)) = 1

happens only with exponentially-small probability. Assuming the adversary does not find

such a wrong proof, the only other way to solve the instance is by finding the correct sink

ST (π(x0
0−→ x0)) = π(x0

T−→ xT ) (i.e., a solution of type (i) as per Definition 16), which

under Assumption 2 is hard.
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Unfortunately now it’s not clear how to implement the successor circuit S efficiently,

as computing a proof π(x0
i+1−→ xi+1) seems to require around i exponentiations even when

given a proof for the previous state π(x0
i−→ xi).

6

An attempt assuming efficient merging. Assume it is possible, say using a pro-

cedure M, to merge proofs π(x
`−→ y) and π(y

`−→ z) into a single proof π(x
2`−→ z) in just

poly(λ) steps (rather than `+ poly(λ) steps required by Property 3). This allows us to

define a very simple hard RSVL instance using the recursive approach of Valiant [91]:

reduce the computation of a proof for time parameter 2` to the computation of two proofs

for time parameter `, and then use M to merge. The resulting algorithm F is given in

Algorithm 1.

F(N, x, `)

1: if x 6∈ QR+
N or ` is not a power of 2 then

2: return ⊥ . Invalid input

3: end if

4: if ` = 1 then . Base case

5: return π(x
1−→ x2) := PP(N, x, 1, x2)

6: else

7: π(x
`/2−→ y) := F(N, x, `/2) . First recursive call

8: π(y
`/2−→ z) := F(N, y, `/2) . Second recursive call

9: return π(x
`−→ z) := M(N, π(x

`/2−→ y), π(y
`/2−→ z)) . Do the efficient merge

10: end if

Algorithm 1: Recursive description of the RSVL instance with efficient merge.

The description of the successor and verifier circuits for the corresponding RSVL

instance can now be obtained by simulating F(N, x, T ) using iterations and stack traces.

We will see in §3.3.2 how this can be exactly (and succinctly) accomplished using the

tree that captures the execution of F (see Figure 3.1.(a)), and limit below to an informal

overview.

Let xi := x2i as before. Starting at ∅ and ending at π(x
T−→ xT ), the RSVL instance

has a standard path of length T . The first few vertices on this line are:

∅ → π(x0
1−→ x1)→ π(x0

2−→ x2)→ π(x0
2−→ x2)‖π(x2

1−→ x3)→ π(x0
4−→ x4)→

π(x0
4−→ x4)‖π(x4

1−→ x5)→ π(x0
4−→ x4)‖π(x4

2−→ x6)→ · · · → π(x
T−→ xT ).

6As a way around the above problem, instead of assuming that S outputs the proof π(x0
i+1−−→ xi+1)

in one invocation, we can split this computation into i efficient steps. However, we again run into the

problem of implementing V efficiently, as – when computing this proof in a straight forward manner –

we have no efficient way of verifying that the intermediate states are correct. If we just let V output

1 on states where it cannot verify correctness, we will introduce “uninteresting” accepting states that

neither contain x2
T

0 nor break the soundness of the protocol (and thus we cannot conclude that solving

this instance breaks Assumption 2 or soundness).
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The verifier V simply checks if the input label corresponds to a valid sequence of accepting

proofs, which can be done efficiently. The successor S — given that an input label is a

valid sequence — looks at the last proof in this sequence, denoted π(a
`−→ b), adds the

base proof π(b
1−→ b2) to the sequence and then keeps merging the last two proofs in this

sequence as long as they have the same time parameter. For example, the third label above

is obtained by first adding the base proof π(x1
1−→ x2) to the previous label π(x0

1−→ x1)

and then doing the merge; the fifth label is obtained by adding π(x3
1−→ x4) to

π(x0
2−→ x2), π(x2

1−→ x3)

and then merging twice. Note that because of the merging, the number of proofs in

the labels is guaranteed to stay below log T — the size of the input labels is there-

fore poly(λ, log T ). Since π(x
T−→ xT ) contains the value of xT = x2T , finding the sink

π(x
T−→ xT ) is hard under Assumption 2. Moreover, coming up with a state that passes

verification but is not of the form Si(∅) for some i requires breaking soundness of the

underlying proof system.

Our solution using somewhat-efficient merging. As noted in the introduction,

the last approach is similar to Valiant’s construction of general-purpose IVC [91]. In

particular, it can be considered to be its instantiation for a specific computation, that of

solving Iterated-Squaring. Unfortunately we do not know how to implement efficient

merging for Pietrzak’s proof system (without resorting to heavy machinery like in [91]).

Hence it is at this point that we deviate from his construction by trading off the efficient

merging procedure for somewhat-efficient merging that Pietrzak’s proof system does allow

thanks to Property 3 (i.e., π(x
`−→ y), π(y

`−→ z) can be merged into π(x
2`−→ z) at the cost of

computing a proof π(x′
`−→ y′) which still requires i+ poly(λ) multiplications). However,

as we will explain in the next section, this property already suffices for a reduction. Our

main observation in the thesis is that even in some cases where the merging is not efficient,

his ideas might still apply.

3.3.2 The Reduction

We start below with a recursive formulation of the solution using somewhat-efficient merge

as it is intuitive and easy to understand (and extends the ideas in Algorithm 1). The

description of the successor and verifier circuits is later obtained by using the standard

trick of simulating a recursive algorithm using iterations and stack traces.

3.3.2.1 Recursive Proof-Merging

The main idea behind our construction is to merge the proofs recursively, exploiting Prop-

erty 3: given π(x
`−→ y) and π(y

`−→ z), we efficiently reduce the computation of π(x
2`−→ z)

to the computation of the proof π(x′
`−→ y′) for x′, y′ as in the merged statement given

in eq.(3.7). Thus, the computation of a proof for time parameter 2` is reduced to the
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computation of 3 proofs for time parameter ` (unlike 2 proofs for the case merging is

efficient), which then can be reduced to computing 3 ·3 proofs of time parameter `/2, and

so on and so forth until ` = 1 at which point we can efficiently compute the base proof.

The resulting recursive algorithm F is given in Algorithm 2. Note that the way F

is structured, the whole computation is being carried out in a verifiable manner: the

midpoint and the endpoint are both accompanied by proofs that they are the correct

power of x and only certified values are being used in the subsequent calls.

F(N, x, `)

1: if x 6∈ QR+
N or ` is not a power of 2 then

2: return ⊥ . Invalid input

3: end if

4: if ` = 1 then . Base case

5: return π(x
1−→ x2) := PP(N, x, 1, x2)

6: else

7: π(x
`/2−→ y) := F(N, x, `/2) . First recursive call

8: π(y
`/2−→ z) := F(N, y, `/2) . Second recursive call

9: µ := y, r := H(µ, x, z, `/2) and x′ := xr ◦ µ . Reduce π(x
`−→ z) to π(x′

`/2−→ y′)

10: π(x′
`/2−→ y′) := F(N, x′, `/2) . Third recursive call

11: Parse π(x′
`/2−→ y′) as (`/2, x′, y′, µ′1, . . . , µ

′
log(`/2))

12: return π(x
`−→ z) := (`, x, z, µ, µ′1, . . . , µ

′
log(`/2)) . Reconstruct π(x

`−→ z)

13: end if

Algorithm 2: Recursive description of the RSVL instance.

Unwinding the recursion. We obtain the description of successor and verifier circuits

for the RSVL instance by simulating F using stack traces. To this end, we view the

execution of F(N, x, T ) as a complete ternary tree τ of depth t = log T , where each node

represents a call to F. In particular, a node i ∈ [2]≤t in τ is labelled by the proof πi
that is computed using that particular call to F: see Figure 3.1.(b). The children of a

particular node are, therefore, labelled by the three proofs that result from recursive calls

made within.

To be precise, the root of τ is labelled π(x
T−→ xT ) (where, if you recall, xi := x2i), its

three children

π(x
T/2−−→ xT/2), π(xT/2

T/2−−→ xT ) and π(x′
T/2−−→ x′

2T/2
),

where x′ is computed as in eq.(3.7), and so on until the leaves which are labelled using base

proofs. For example, the tree corresponding to F(N, x, 4) is depicted in Figure 3.1.(b).

The RSVL instance we propose consists of a standard path of length 3log T starting

at ∅ and ending at π(x
T−→ xT ). This corresponds to a depth-first traversal of τ . The

intermediate vertices can be described using τ thanks to this correspondence: for i ∈ [2]t,

the i-th vertex on the standard path consists of set the of proofs in the stack of F(N, x, T )

when its execution begins the recursion at i — the stack trace at i, for short.
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Figure 3.1: (a) The complete binary tree that corresponds to F(N, x, 8) from Algorithm 1.

(b) The complete ternary tree that corresponds to F(N, x, 4) from Algorithm 2. The value

of the x2, x02, x12 and x22 can be computed using eq.(3.7).

These proofs can be described in terms of τ , but we have to first recall certain defini-

tions pertaining to trees. The sibling of a node i in a tree is defined as the set of nodes

that have the same parent as i. By “left” siblings of a node i ∈ τ , we refer to the siblings

that lie topologically to the left of that node. The ancestor of a node i in a tree is the set

of node that lie on the path from i to the root. By “inclusive” ancestors of i, we refer to

set containing the ancestors of i and i itself.

A quick inspection of Algorithm 2 (and Figure 3.1.(b)) reveals that the stack trace at

i comprises of a sequence of proofs, one for each left sibling of the inclusive ancestors of

i. On denoting these set of nodes of τ by Trace(i), the standard path in our RSVL

instance is defined as

∅ = (πj)j∈Trace(0t) → (πj)j∈Trace(0t−11) → (πj)j∈Trace(0t−12) → (πj)j∈Trace(10t−1) →

. . .→ (πj)j∈Trace(2t−11) → (πj)j∈Trace(2t) → π(x
T−→ xT ).

Consequently, the label for a vertex consists of at most 2 log T proofs of the underlying

proof system (i.e., eq.(3.6)), and we assume that labels with fewer proofs are padded

accordingly.

For example, consider the toy RSVL instance from Figure 3.2. For the node 122

(red square), the path to the root is dashed in red, and thus its inclusive ancestors are

(122, 12, 1, ε). The Trace(122) = (0, 10, 11, 120, 121) is hatched north east in red, and
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0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

0 1 2 0 1 2 0 1 2

0 1 2

ε

Figure 3.2: A schematic diagram of τ for F(N, x, 8). The resulting RSVL instance is of

length 27. The red square node denotes the vertex i = 122, whereas the blue hexagon

node denotes i + 1 = 200. The path from i = 122 to the root is dashed in red and the

vertices in Trace(i) are hatched north east in red. Similarly, the path from i + 1 = 200

to the root is dotted in blue and the vertices in Trace(i + 1) are hatched north west in

blue. (The vertex 0, as it appears in both the traces, is double-hatched.)

the correct label for the 122-th vertex is thus (π0, π10, π11, π120, π121) where, for example,

π0 = π(x0
4−→ x4) and π10 = π(x4

2−→ x6).

With the RSVL line defined as above, the successor and verifier functions follow quite

logically. The verifier, given as input a vertex v and an index i, ensures that v is indeed

the valid stack trace at i. The successor, on the other hand, generates the stack trace at

i+ 1 given the stack trace at i. Both the intuitive and formal descriptions of the circuits

V and S are provided in the next section.

3.3.2.2 The RSVL Instance

The verifier circuit. On input an index i and a vertex v, parsed as a sequence of

proofs (π̃j)j∈Trace(i), the verifier V ensures that v is a valid stack trace at i by performing

a series of checks on the sequence. Recall from eq.(3.6) that each proof π̃j in the sequence

is of the form (N, `j, xj, yj,µj), where `j denotes the time parameter of the proof, xj and

yj are its start and end points respectively, and µj denotes the midpoints.

The verifier V first ensures that each π̃j is valid by invoking the VP algorithm of the

underlying proof system (from §3.2.3).

Second, V checks whether the time parameter of each proof matches its level: the

correct time parameter of a proof π̃j is T/2|j|, where |j| is the level of the node j in the

tree τ (with the root at level 0 and the leaves at level t). As a concrete example, consider

the node 122 from Figure 3.2 and the corresponding vertex (π0, π10, π11, π120, π121). For

this vertex to be valid, π0 must have length 4 (i.e., `0 = 4) whereas π121 must be a base

proof (i.e., `121 = 1).

Finally, provided that each proof satisfies the first two conditions, V checks if the

end points of the proofs in the sequence chain appropriately. For every proof π̃j in the
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sequence, there are two possibilities depending on whether or not π̃j corresponds to a

merged statement – we denote them cases (i) and (ii), respectively. In case (i), the start

of π̃j is computed from the two proofs that precede π̃j in the sequence by merging them

using eq.(3.7). The start of π̃j in case (ii), however, just coincides with the endpoint of

the proof that precedes it in the sequence (and in case π̃j is the first proof in the sequence,

it must start at x).

Going back to the earlier example, the sequence of proofs (π0, π10, π11, π120, π121) is

valid if

π0 ↔ π10 ↔, π11 ! π120 ↔ π121, (3.9)

where the ‘!’ denotes case (i) and the ‘↔’ denotes case (ii). That is, for example,

x10 = y0 and x121 = y120 but since π120 is a merged proof, x120 is computed from π10 and

π11 using eq.(3.7).

VN,x,T (v, i) . i is a t-trit string

1: if i > 3log T then return 0

2: Parse v =: (π̃j)j∈Trace(i)

3: Set xnext = x . Set starting point of the chain

4: for j ∈ Trace(i) do . Verify the sequence topologically from left to right

5: Parse π̃j =: (N, xj, yj, `j,µj)

6: if VP(π̃j) = 0 or `j 6= T/2|j| then return 0 . Checks 1 and 2

7: else if xj 6= xnext then return 0 . Check 3

8: else . Compute the next point on the chain

9: if j[|j|] = 1 then . case (i): second recursion

10: Set µ := xj and compute r = H(µ, xj−1, yj, `j)

11: Set xnext = xrj−1 ◦ µ . Compute the merged statement

12: else Set xnext := yj . case (ii): first or third recursion

13: end if

14: end if

15: end for

16: return 1 . Valid stack trace at i

Algorithm 3: The verifier circuit for our RSVL instance.

The successor circuit. Given as input a vertex v, the successor circuit S first uses a

function7 index(·) to extract the index i that is implicitly embedded in the sequence of

proofs in v. Next, it confirms whether or not v is the valid i-th vertex on the line, i.e.

the stack trace at i, by invoking the verifier V. In case v is invalid, S forms a self-loop at

v; otherwise, v is the valid stack trace at i and S utilises it to compute the stack trace at

i+ 1.

7To be precise, the function index(·) on input a sequence of proof v computes the index i as follows:

it counts the number of proofs of length k in v and then encodes this count in the log `-th trit position of

i. If there are more than two proofs of a particular length, then we assume that the function just returns

⊥.
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S first simulates the next recursion in the pipeline by adding the base proof πi to

v := (π̃j)j∈Trace(i) (cf. lines 5 to 11 in Algorithm 4 for the exact computation involved)

and then keeps merging the last three proofs in this sequence as long as they have the

same time parameter. In particular, in the case that πi corresponds to a merged statement

(i.e., if i[t] = 2) — since some recursive call to F (up the tree τ) has been completed —

S has to reconstruct the resulting proof. We denote the node in τ where this recursive

call originates by source(i), and it can be obtained by truncating the trailing 2s of i. We

refer to Algorithm 4 (lines 14 and 15) for the exact procedure used for reconstructing the

proof for source(i), but once it possesses this proof, S has all the components of the next

vertex on the line, the stack trace at i+ 1.

For example, let’s consider the successor circuit applied to (π0, π10, π11, π120, π121), the

i = 122-th vertex in the RSVL instance given in Figure 3.2. S first computes π122, and

since this concludes the recursive call F(N, x4, 4) at the (source) vertex 1, S reconstructs

the corresponding proof π1 by merging twice: first it merges π120, π121 and π122 (using

eq.(3.8)) to reconstruct π12, and then it merges π10, π11 and π12 to obtain π1. Finally it

assembles the next vertex (i + 1 = 200) as (π0, π1), and since Trace(200) = (0, 1) the

newly assembled proof indeed is the stack trace at i+ 1.

However applying the successor again, as no merging is involved, requires simply

adding the base proof π200 to the input label (π0, π1). That is, the label for the 201-th

vertex is (π0, π1, π200).

SN,x,T (v)

1: i := index(v) . Extract the index

2: if V(v, i) = 0 or i ≥ 3log T then return v . Invalid stack trace at i or i ≥ L: form

self-loop

3: Parse v =: (π̃j)j∈Trace(i)

4: for each j ∈ Trace(i) do Parse π̃j =: (N, xj, yj, `j,µj)

5: if i[t] = 2 then . Compute start of next base proof

6: Set µ = yi−1 and compute r = H(µ, xi−1, yi, 1)

7: Compute xnext = xri−1 ◦ µ . case (i): compute the merged statement

8: else

9: Let l denote the last index in Trace(i)

10: Set xnext = yl . case (ii)

11: end if

12: Set π̃i := πi := PP(N, xnext, 1, x
2
next) . Next base proof

13: if i[t] = 2 then . Merge

14: Let s := source(i)

15: Set π̃s := (N, 2`s0, xs0, ys1, ys0, ys20, ys220, . . . , yi−2) . Reconstruct proof π̃s for

source

16: end if

17: return (π̃j)j∈Trace(i+1) . Return stack trace at i+ 1

Algorithm 4: The successor circuit for our RSVL instance.



57

Concurrent work. In a concurrent and independent work, Ephraim et al. [38] construct

objects called “continuous verifiable delay functions” and show how they can be used to

construct SVL instances. Their construction from Iterated-Squaring is similar to

ours except that they use a k + 1-ary tree instead of a ternary tree in our construc-

tion. Appropriately setting the parameter k allows them to relax the assumption to the

soundness of (i) α(1)-round Fiat-Shamir Transform to construct hard SVL instances,

and (ii) constant-round Fiat-Shamir Transform to separate P ∩ PPAD from NC. Our

construction given can be thought of as their construction with k set to 2.

3.3.3 Analysis

In this section we state and prove the main theorem in this chapter.

Theorem 1. For a security parameter λ, let (N, x, T ) be sampled as in Assumption 2

and

S := SN,x,T : {0, 1}m → {0, 1}m and V := VN,x,T : {0, 1}m × [2m]

be defined as in Algorithms 3 and 4, where

m := m(T, λ) = 2 log T · (log T + 4) · λ.

The family of distributions {(S,V, ∅, T )}λ∈N constitutes a family of hard RSVL instances

relative to the random oracle H.

Proof. First, in Claim 1.1 we show that the RSVL instance is efficient: i.e., S and V are

both polynomial-sized circuits. Then, to establish hardness, we show that any adversary

that runs in time poly(λ), making up to Q = Q(λ) ≤ poly(λ) queries to the random

oracle H, has a negligible probability of success.

Recall that by Definition 16 the adversary can solve an RSVL instance in two ways:

find either (i) the real sink, which in our case contains the value x2T ; or (ii) a false positive

i.e., a pair (v, i) s.t. V(v, i) = 1 while Si(∅) 6= v.

Let p(λ) denote the probability that a poly(λ)-time adversary on input (N, x, T ) as

above finds a type (i) solution: under Assumption 2, p(λ) is negligible in λ (even if we

put no bound on Q). In Claim 1.2 below we will show that the probability of a type (ii)

solution is at most 4 ·Q/2λ/2−1. Therefore, the total probability of the adversary breaking

the hardness of our RSVL instance is

Pr[type (i) ∨ type (ii)] = Pr[type (i)] + Pr[type (ii)] ≤ 4 ·Q
2λ/2−1

+ p(λ) ∈ negl(λ), (3.10)

completing the proof.

Claim 1.1. S and V are both efficient, i.e. have size poly(log T, λ) which is poly(λ) for

T ∈ λω(1).
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Proof. As a first step, we show that the size of the input vertices m(T, λ) is poly(log T, λ).

As noted in §3.3.2, a vertex consists of at most 2 log T proofs of the underlying proof

system. Since the proofs in consideration have time parameter at most T , from eq.(3.6)

we infer that m(T, λ) ≤ 2 log T · ((log T + 4) ·λ), i.e. m(T, λ) ∈ poly(log T, λ) as claimed.8

Next, let’s consider the verifier circuit V given in Algorithm 3. Note that the size of

V is dominated by the call to VP (line 5) and the group operation ◦ for QR+
N (line 10)

inside the loop (line 3). Since the output of Trace(·) consists of at most 2 log T elements,

and VP and ◦ are both efficient, the size of V is roughly 2 log T · poly(log T, λ) which is

still poly(log T, λ).

A similar argument holds for the successor circuit S.

Claim 1.2. For (N, x, T ) as in the theorem, the probability that any adversary, which

makes at most Q queries to the random oracle H, finds a solution of type (ii), i.e. a false

positive (v, i) s.t. V(v, i) = 1 but Si(∅) 6= v, is upper bounded by 4 ·Q/2λ/2−1.

Proof. For the event “bad query” as defined in Definition 20, the probability that an

adversary produces a solution of type (ii) is

Pr[type (ii)] = Pr[type (ii) ∧ (bad query ∨ ¬bad query)]

= Pr[type (ii)|bad query] · Pr[bad query] + Pr[type (ii) ∧ ¬bad query]

≤ Pr[type (ii)|bad query] · Pr[bad query] + 1/2λ+1 (3.11)

≤ 3 ·Q/2λ/2−1 + 1/2λ/2−2 (3.12)

≤ 4 ·Q/2λ/2−1.

The upper bound in eq.(3.12) above directly follows Lemma 5, and we argue below that

eq.(3.11) is a consequence of Lemma 6. The properties of QR?
N (i.e. the generators of

QR+
N) that were discussed in §3.1.2 will be crucial as it allows repeated application of

Lemma 6.

Let’s suppose that the adversary outputs a solution (v, i) of type (ii), i.e., V(v, i) = 1

but Si(∅) 6= v, without having made a bad query. Since V accepts, v is of the form

(π̃j)j∈Trace(i), and this sequence is guaranteed to be a valid chain starting at x as described

in §3.3.2.2. We argue that, provided x ∈ QR?
N , the adversary could not have output the

type (ii) solution (v, i) since such a vertex v would equal Si(∅) and hence lie on the

RSVL line leading to a contradiction. Since a random x ∈ QR+
N also belongs to QR?

N

with a overwhelming probability of 1−1/2λ/2−2 (cf.eq.(3.4)), the upper bound in eq.(3.11)

follows.

Provided x ∈ QR?
N and that the adversary never makes a bad query, let’s see why the

type (ii) solution it outputs lies on the RSVL line. Assume that

v =: (π̃j)j∈Trace(i) = {π̃j1 , π̃j2 , . . . , π̃j`}.

8This can also be established by analysing Algorithm 2. Let m(·) denote the upper bound on the size

of the vertices (in bits). This parameter is governed by the recursion m(T ) ≤ 2 log T + m(T/2), with

m(1) ≤ 4λ. The 2 log T factor here is the cost of storing completed proofs from the first two recursions,

whereas m(T/2) is the cost of computing the proof for the merged statement (which is half the length).

Therefore m(T ) < 8 log2 T · λ ∈ poly(log T, λ).
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Note that π̃j1 is of the form π̃(x1
`1−→ y1), where x1 = x and y1 = x2`1 . Since the verifier

guarantees that the start x, the end point y1 and the time parameter `1 all match the hon-

estly generated proof, as a consequence of the soundness of the proof system (Lemma 6),

we get π̃(x
`1−→ y1) = π(x

`1−→ y1).

Next, there are two possibilities: either π̃j1 ↔ π̃j2 or π̃j1 ! π̃j2 (with ↔ and !
as defined in eq.(3.9)). In the first case, xj2 = y1 and by the property of the generators

given in eq.(3.5), we have y1 ∈ QR?
N . Since y1 ∈ QR?

N , we can again apply Lemma 6

and therefore π̃j2 = πj2 . As for the second case, let π̃j2 =: π̃(x2
`2−→ y2). Since we assume

that the adversary did not make bad queries, it is guaranteed that x2 ∈ QR?
N and, by

Lemma 6, we get π̃j2 = πj2 .

On iterating the above argument over all the proofs in v, we get v = (πj)j∈Trace(i) =

Si(∅) contradicting the premise of the claim.
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4 PPAD-Hardness and the Fiat-Shamir Methodology

In this chapter, we present the second construction of hard-on-average distribution on the

Relaxed-Sink-of-Verifiable-Line problem. This construction can be thought of as

a strengthening of the result from the previous section. In particular, it can be viewed as

an alternative instantiation of the ideas there with two main differences concerning the

underlying assumptions. First, the underlying computational problem is switched to (from

Iterated-Squaring) #SAT and therefore we rely here on the (worst-case) hardness of

#P, which is weaker than the concrete number theoretic Assumption 2. Secondly, the

underlying interactive protocol needs to be switched accordingly to the classical Sumcheck

Protocol for #SAT ∈ IP [67]. We describe this protocol, both its original form and the

variations required for our construction, in §4.2.

The construction of the Relaxed-Sink-of-Verifiable-Line instance itself relies

also on the recursive proof-merging technique. It is presented in detail in §4.3, albeit a

bit different from the previous construction. As for its hardness, we additionally rely on

the assumption that Fiat-Shamir Transform is (unambiguously) sound for the Sumcheck

Protocol. We show that this is true in the random-oracle model. Moreover in §4.4,

using ideas from [24], we show that it also holds under some strong assumptions on fully-

homomorphic encryption.

We start off with an informal overview of the chapter.

4.1 Overview

4.1.1 Main Results

We base PPAD-hardness on the soundness of the Fiat-Shamir Transform, which we de-

scribed in §1.3.1. The particular protocol to which we apply the Fiat-Shamir Transform

is the Sumcheck Protocol by Lund et al. [67], which is an n-round interactive proof for

counting the number of satisfying assignments to a given SAT instance over n variables.

We show that solving the End-of-Line problem is no easier than breaking the sound-

ness of the non-interactive argument obtained by applying the Fiat-Shamir Transform to

the sumcheck protocol. Note that we do not explicitly require (adaptive) unambiguous

soundness. As we shown later in Claim 4.1 (§4.1.2) for the case of Sumcheck Protocol

unambiguous soundness reduces to plain soundness.
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Theorem 2 (informal). Solving the End-of-Line problem is no easier than breaking

the (adaptive) soundness of the Fiat-Shamir Transform, when applied to the Sumcheck

Protocol.

We prove this theorem by constructing an efficiently sampleable distibution of End-

of-Line instances, where solving this distribution requires either breaking the soundness

of the Fiat-Shamir Transform, applied to the Sumcheck Protocol or solving a #P complete

problem (and thus any problem in #P). Since breaking the soundness of Fiat-Shamir is

reducible to #SAT (in fact to SAT) it follows that efficiently solving the above distribu-

tion is no easier than breaking Fiat-Shamir. (We note that, like in the previous chapter,

all our theorems apply to the class CLS as well.).

On the soundness of Fiat-Shamir. The Fiat-Shamir heuristic is widely used in prac-

tice, and constructing hash functions for which the transform is sound is a central and

long-standing open question in cryptography. Empirical evidence in support of the sound-

ness of Fiat-Shamir is the fact that it has been successfully “field tested” for over three

decades, though it should be mentioned that the context in which the transform was

originally proposed focused on constant-round protocols, whereas the Sumcheck Protocol

has n rounds.

From a foundational perspective, Goldwasser and Kalai [51] demonstrated theoretical

barriers towards the instantiation of Fiat-Shamir in the case of certain computationally

sound protocols (a.k.a. “arguments”). Secure instantiations for information theoretically

sound protocols (i.e. “proofs”), such as the Sumcheck Protocol, are an active area of recent

research. Several recent works have shown that, under strong cryptographic assumptions,

the heuristic is sound when it is applied to certain interactive proofs [61; 26; 24; 28;

77]. For our specific purposes it is sufficient that there exists a specific hash family

for which the transform is sound for the Sumcheck Protocol. Thus, the family can be

“tailored” to the protocol. As far as we know, the application of Fiat-Shamir to sumchecks

has only been considered recently, most notably in the “sumcheck style” protocol by

Pietrzak [78] from the previous chapter and in very recent work of Canetti et al. [24].

4.1.1.1 Instantiating Fiat-Shamir

We obtain two instantiations of the Fiat-Shamir Transform to the Sumcheck Protocol:

first with a random oracle and second with the recent construction of Canetti et al. [24].

Random oracle instantiation. We give supporting evidence that the Fiat-Shamir

Transform may retain soundness of the Sumcheck Protocol by proving that this indeed is

the case when the hash function in the transform is modeled as a Random Oracle. What

we show is in fact stronger, namely that the transformed protocol satisfies unambiguous

soundness, which is what our reduction actually requires (see §4.1.2 for further discussion).

One important consequence is the following.
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Theorem 3. Relative to a random oracle, finding a Nash equilibrium is no easier than

solving #SAT (and in particular no easier than inverting any one-way function).

FHE-based instantiation. Canetti et al. [24] construct a hash family for which, under

the assumption that any one of a broad class of fully homomorphic encryption (FHE)

schemes has almost optimal security against polynomial-time adversaries, the Fiat-Shamir

Transform is sound when it is applied to (certain instantiations of) the sum-check protocol.

Adapting their results to our setting gives rise to a hard distribution in the class CLS.

Theorem 4 (Informal Statement, see Theorem 9). Assuming that any one of the LWE-

based fully homomorphic encryption schemes in the literature (such as [19; 18; 17; 45;

20]) has optimal security against quasi-polynomial-size key-recovery attacks, and assuming

further that the #SAT problem over polylog variables is (worst-case) hard for polynomial

time algorithms, there exists an efficiently sampleable hard distribution of End-of-Line

instances.

Here and below, by optimal security against quasi-polynomial-size attacks, we mean

that every quasi-polynomial-size circuit family breaks the assumption with probability at

most quasipoly(λ)/2λ.

To obtain this result, we need a hash function for which the Fiat-Shamir Transform

is sound when it is applied to a sum-check protocol for a hard language. Specifically, we

consider Sumcheck Protocol counting the number of satisfying assignments for a formula

with poly-logarithmically many variables. By the random self-reducability of #P [66;

50], the assumption that the #SAT problem for formulas with polylog variables is (worst-

case) hard for polynomial time algorithms, gives rise to a hard #SAT distribution over

such formulas.1

The results of Canetti et al. [24] do not immediately give a hash function as needed.

This is because they consider applying the Fiat-Shamir Transform to doubly-efficient

interactive proofs, where the honest prover runs in polynomial time.2 We, on the other

hand, need to apply the transform to a sumcheck over a quasi-polynomial number of

assignments, where the honest prover runs in quasi-polynomial time. Adapting their

results to our setting, we show that assuming almost-optimal security of the FHE scheme

for quasi-polynomial adversaries implies that the transform is sound for the sum-check

protocol we consider. See §4.4 for an exposition on this result and a formal statement of

Theorem 4.

Sampling hard instances of EOL. By reducing appropriately chosen one-way func-

tions to #SAT, our result opens up the possibility of sampling hard instances of End-of-

1Specifically, there is a distribution over #SAT instances with polylog variables and a polynomial-

time reduction from solving this distribution with non-negligible probability to solving the problem in

the worst case (with high probability). Such a result follows similarly to the worst-case to rare-case

reductions in the recent work of Goldreich and Rothblum [50].
2In fact, they need a stronger efficient sampleability property. A sum-check for a poly(n)-sized function

over m variables is sampleable in time poly(n, 2m).
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Line, whose size is significantly smaller than the ones potentially obtained by reducing

from indistinguishability obfuscation (IO) and related assumptions. First, the random or-

acle can be instantiated heuristically with a concrete practical hash function (e.g., SHA3).

The reduction from #SAT is best instantiated with a small SAT instance in which each

variable appears in a small constant number of clauses. Hard distributions of such SAT

instances arise for example from Goldreich’s candidate one-way function [49]. This opens

up the possibility, given an efficient reduction from End-of-Line to Nash, of sampling

reasonably-sized distributions of games for which solving Nash is heuristically hard and

against which existing heuristics (such as the Lemke-Howson algorithm) can be tested.

4.1.2 Techniques

Our main technical contribution is a stateful incrementally-verifiable procedure that, given

a SAT instance over n variables, counts the number of satisfying assignments. The

counting is performed via an exponential sequence of polynomial-time computation steps,

where we maintain an intermediate state between consecutive steps. Incremental verifia-

bility means that each intermediate state includes proof of its correctness, and the proof

can be updated and verified in time poly(n). The proofs are based on a non-interactive

Sumcheck Protocol obtained using the Fiat-Shamir methodology. The main technical

challenge is efficient incremental updates to these proofs. We use this incrementally-

verifiable counting procedure to construct, given a #SAT instance, an instance of the

Relaxed-Sink-of-Verifiable-Line (RSVL) problem. We show that finding a solu-

tion to the RSVL instance requires either breaking the unambiguous soundness of the

non-interactive sumcheck, or solving the original #SAT instance. This constitutes the

first step of our blueprint. For the second step, i.e. to obtain PPAD or CLS hardness,

we simply invoke Lemma 4. We proceed with a high level explanation of the first step.

Sums and sumcheck proofs. Our incrementally-verifiable construction computes sums

of low-degree polynomials over exponential numbers of terms. Fix a finite field F and an

n-variate polynomial f : Fn → F over the field F, where f has degree at most d in each

variable (think of d as a constant). We are interested in computing sums of the form:∑
z∈{0,1}n

f(z).

We are also interested in sumcheck proofs, proving that y is the correct value of such a

sum. More generally, we consider the tasks of computing, proving and verifying sums

where a prefix of the variables are fixed to values β = (β1, . . . , βj) ∈ Fj. We refer to these

as prefix sums, or the sum with prefix β. A sumcheck proof can prove statements of the

form: ∑
z∈{0,1}n−j

f(β, z) = y,

which we refer to as a statement of size 2n−j.
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Given a SAT formula Φ over n variables, a claim about the number of satisfying

assignments can be expressed as a sumcheck claim over an appropriately chosen field [67].

The polynomial f is derived from Φ, and the individual degree can be as low as 4. For

this, we first transform Φ into a 3SAT-4 formula (a 3CNF where each variable appears

in at most 4 clauses), using the (Karp) reduction from counting satisfiable assignments

of general CNFs to counting satisfying assignments of 3SAT-4 formulae [90]. A standard

arithmetization yields an appropriate polynomial f over the field. In what follows, we use

the numbers {0, 1, . . . , d} to refer to the “first” (d+ 1) field elements.

Incrementally-verifiable counting. Our incrementally-verifiable counting procedure

is given as input the field F and an n-variate polynomial f over this field (described as an

arithmetic circuit of size poly(n) and degree d). We also consider giving the procedure,

as part of its input, a prefix β ∈ Fj. The goal of the procedure is computing the value y

of the sum with prefix β, and a sumcheck proof for this value.

This computation is performed in a sequence of incremental steps. Towards this, we

specify two poly(n)-time algorithms: S and V. The procedure S performs single steps,

receiving as input the current state, and computing the next state. The completeness

requirement is that applying S sequentially for L = L(n) steps, starting at a fixed known

initial state s0, leads to a final state sL comprised of the correct value y of the sum with

prefix β, as well as a proof π of y’s correctness. We use st to denote the t-th state along

the path from s0 to sL. In our construction, each intermediate state st includes its index

t ∈ [L]. Since we are computing the value of an exponential sum, we expect the number

of steps L to be exponential. We use m = m(n) to denote a bound on the size of the

state (the memory used by this process), and P = P (n) to denote a bound on the size

(and verification time) of the final proof π.

Soundness is guaranteed using the verification procedure V, which takes as input a

state and accepts or rejects. The unambiguous soundness requirement is that it should

be intractable for an adversary who is given the input to compute a state s′ with index

t s.t. s′ 6= st but V accepts s′. We note that this is a strong soundness requirement, and

we use the strength of this guarantee to reduce to the RSVL problem.

An incrementally-verifiable counting procedure as described above directly gives rise

to an instance of the RSVL problem, where any solution either specifies the correct

count, or describes a state s′ 6= st that V accepts. We first overview the verifiable counter

construction, and close by elaborating on the RSVL problem and on the reduction to it.

A recursive construction. Suppose that (Sn−j,Vn−j) can compute sums of size 2n−j

in an incrementally-verifiable manner. Suppose further that this computation takes L

steps, uses m memory, and has a final proof of size P . We want to recursively construct

an incrementally-verifiable procedure (Sn−j+1,Vn−j+1) for computing sums of size 2n−j+1,

which takes O(L) steps, uses m+ O(P ) + poly(n) memory, and has a final proof of size

P + poly(n). If we could do so, then unwinding the recursion would give a procedure

for computing sums of size 2n with 2O(n) steps, poly(n) space and poly(n) proof size
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(at the base of the recursion, the trivial procedure (S0,V0) for computing sums of size 1

takes a single step, uses poly(n) memory and has an “empty” proof). In this overview

we ignore the time needed to verify the proof, but we note that it is closely tied to the

size P of the final proof. We note that a similar recursive structure underlies Valiant’s

incrementally-verifiable computation procedure [91].

To construct (Sn−j+1,Vn−j+1), given a prefix β ∈ Fj−1, the naive idea is to use Sn−j
to sequentially compute two sums of size 2n−j. We refer to the process of running Sn−j
for L steps to compute a prefix sum as a full execution of (Sn−j). In the naive approach,

a full execution of Sn−j+1 is comprised of two sequential full executions of Sn−j: a first

execution for computing the sum for prefix (β, 0) ∈ Fj, and a second execution computing

the sum for prefix (β, 1) ∈ Fj. The first full execution yields a sum y0 and a proof π0.

These are carried through in the second full execution, which yields a sum y1 and a proof

π1. The final result is y = (y0 + y1), and a naive proof for this result is the concatenated

proof (y0, π0, y1, π1). We can construct (Sn−j+1,Vn−j+1) to implement and verify the above

execution, and it follows that if the base procedure was unambiguously sound, then the

new procedure will also be unambiguously sound. The number of steps and the memory

grow exactly as we would like them to: in particular, the space complexity of the new

procedure is indeed roughly m+P , since we only need to “remember” the proof and end

result from the first execution while performing the second execution. The main issue

is that the proof length and verification time have doubled. If we repeat this recursion

many times, they will become super-polynomial.

A natural approach is to try and merge the proofs: given (y0, π0) and (y1, π1), to

construct a proof π for the total count y = (y0 + y1). Ideally, the merge would be

performed in poly(n) time, and π would be of similar length to π0 and π1. This was

the approach used in [91], who used strong extractability assumptions to achieve efficient

proof-merging (we recall that this construction does not have unambiguous proofs, see

above). Our approach is different: we use a (long) incrementally-verifiable proof-merging

procedure, which is constructed recursively (and is unambiguously sound). Proof merging

cannot be performed in poly(n) time, indeed it requires O(L) steps, but this is fine so long

as the merge itself is incrementally-verifiable and does not use too much memory or proof

size. To obtain an incrementally-verifiable proof-merging procedure, we show that the

proof system we use supports a reduction from proof-merging to incrementally-verifiable

counting. In particular, given the counts {yγ}dγ=0 for the (d+ 1) prefix sums with prefixes

{(β, γ)}dγ=0 (sums of size 2n−j), computing a proof π for the count y = (y0 +y1) of the sum

with prefix β (a sum of size 2n−j+1) reduces to computing a single additional prefix sum

of size 2n−j. This merge procedure relies heavily on the structure of the non-interactive

sumcheck proof system, we give an overview below.

Given the merge procedure, we can detail the recursive construction of (Sn−j+1,Vn−j+1).

Given a prefix β ∈ Fj−1, a full execution of Sn−j+1 runs (d + 1) full executions of Sn−j,

computing the prefix sums (and proofs) for sums with prefixes {(β, γ)}dγ=0 (these are sums

of size 2n−j). Let {(yγ, πγ)}dγ=0 be the (respective) prefix sums and proofs. We then run

a final full execution of Sn−j to compute a “merged” proof π for the sum with prefix β (a
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sum of size 2n−j+1). Once the merged proof is completed we can “forget” the intermediate

values {(yγ, πγ)}dγ=0. We end the entire process with a proof that is not much larger than

the proofs for sums of size 2n−j. Computing the merged proof boils down to computing an

additional sum of size 2n−j with a prefix (β, σ) for a single field element σ ∈ F. Thus, the

number of steps for a full execution of Sn−j+1 is O(d · L) (recall that d is constant), and

the memory used is m+O(d · P ). Unwinding the recursion, we obtain an incrementally-

verifiable counting procedure which takes 2O(n) steps, with poly(n) memory and proof

size.

We proceed to detail the proof system we use, and then describe the reduction from

proof-merging to incrementally-verifiable counting.

The non-interactive sumcheck. In the interactive Sumcheck Protocol, an untrusted

(and not necessarily efficient) prover wants to convince a verifier that:∑
z∈{0,1}n

f(z) = y.

The protocol proceeds in n rounds. In the first round, the prover sends a univariate

polynomial g̃1 obtained by leaving the first variable in f free, and summing over all 2n−1

assignments to the remaining variables. Note this univariate polynomial is of degree d,

and thus it can be specified by sending its valuations over the first (d+ 1) field elements,

and the prover sends these valuations α1 = {α1,γ = g̃1(γ)}dγ=0 as its message. On receiving

these valuations, the verifier interpolates to recover g̃1, and checks that this polynomial is

consistent with the prover’s past claims, i.e., that g̃1(0) + g̃1(1) = y (otherwise the verifier

rejects immediately). The verifier then picks a random field element β1 and sends it to

the prover.

More generally, the first i rounds fix polynomials g̃1, . . . , g̃i and a prefix of field elements

β1, . . . , βj . In the (i+1)-th round the parties run the same two-message protocol described

above to verify the i-th claim:∑
z∈{0,1}n−i

f(β1, . . . , βj, zi+1, . . . , zn) = g̃i(βi).

Note that this i-th claim is about the sum with the prefix β = (β1, . . . , βj), which is of

size 2n−i. After n rounds, the verifier can simply verify the n-th claim on its own using

a single evaluation of f on the point (β1, . . . , βn). Soundness of the protocol follows from

the fact that if the i-th claim is false, then for any g̃i+1 sent by a cheating prover, w.h.p.

over the choice of βi+1 the (i + 1)-th claim will also be false (because of the Schwartz-

Zippel Lemma). Unambiguity means that even if the i-th claim is true, then if a cheating

prover sends any polynomial g̃i+1 that is not equal to the “prescribed” polynomial gi+1(x)

that would have been sent by the honest prover, then w.h.p. over the choice of βi+1 the

(i + 1)-th claim will be false (even though the i-th claim was true!). More generally, we

can use the same protocol to verify sums with a fixed prefix β ∈ Fj for any j ∈ {0, . . . , n}.
This requires only (n− j) rounds of interaction.
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To make this protocol non-interactive, we use the Fiat-Shamir methodology. Given

a hash function H, the prescribed proof for an instance (F, y, f) specifies the prescribed

prover’s messages (α1, . . . ,αn) in a particular execution of the Sumcheck Protocol. The

particular execution is specified by computing for each i the verfier’s challenge βi =

H(F, y, f,α1, β1, . . . , βi−1,αi). To verify such a proof, the verifier: (i) computes each βi
(using the hash function, as above), and (ii) checks that the sumcheck verifier would

accept the input (F, y, f) given the transcript (α1, β1, . . . ,αn, βn). We assume that this

non-interactive protocol is adaptively unambiguously sound: given the hash function H,

no polynomial-time prover can find a false statement (F, ỹ, f) and an accepting proof for

that statement. Nor can a cheating prover find a true statement (F, y, f) and an accepting

proof that differs from the prescribed one. Similarly to the interactive sumcheck, we can

also use the non-interactive sumcheck to verify sums with a fixed prefix β ∈ Fj. In fact, if

we define the language appropriately, adaptive soundness of this protocol directly implies

adaptive unambiguous soundness. We elaborate on this below, see Claim 4.1.

Merging proofs by computing a (small) sum. Recall our setting: for a fixed prefix

β ∈ Fj−1, we have computed the sums with prefixes {(β, γ) ∈ Fj}dγ=0, which have values

{yγ}dγ=0, together with corresponding proofs {πγ}dγ=0 for those values. We want now to

compute the proof π for the sum with prefix β. This proof corresponds to a larger sum,

and so it should contain an additional (collapsed) round of interaction. What should

the prover’s first message in the protocol for this statement be? The first message is

comprised of the values of the polynomial gj, where gj(γ) equals the sum with prefix

(β, γ). Thus, the first message is simply the values α1 = {yγ}dγ=0. Once we know the

prover’s first message α1, we can compute the verifier’s random challenge σ by applying

the Fiat-Shamir hash function to the instance and to α1. To complete a transcript for

the non-interactive Sumcheck Protocol (and a proof for the sum with prefix β), we now

need a proof for the next claim, i.e., a proof that:∑
z∈{0,1}n−j

f(β, σ, z) = g1(σ).

In particular, all we need is to compute a sum of size 2n−j with prefix (β, σ), and a proof for

this sum. Once the value and proof for this larger sum are computed, we can “forget” the

values and proofs {yγ, πγ}dγ=0 that were computed for the prefixes. This completes the re-

duction from incrementally-verifiable proof-merging to incrementally-verifiable counting.

More generally, we have shown that the sum and proof for a statement of size 2n−j+1

can be obtained by computing (d+ 1) proofs for statements of size 2n−j (with a common

prefix of length 2j−1, followed by each one of the first (d + 1) field elements), and an

additional proof for a final statement of size 2n−j (with the same common prefix, but

a different j-th element that depends on the Fiat-Shamir hash function). Note that

while sums with boolean prefixes correspond to the counting the number of satisfying

assignments in subcubes of the hypercube {0, 1}n, the sums with prefixes that include

elements outside {0, 1} have no such correspondence and in particular the summands can

be arbitrary field elements.
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4.1.2.1 From Soundness to Unambiguous Soundness

Recall that an interactive proof system is unambiguously sound [83] if the following holds.

The proof system specifies a prescribed strategy for the honest prover to follow on YES

instances. If, given a YES instance, the prover first deviates from its prescribed strategy

in some round i, then no matter what strategy it follows in subsequent rounds, the verifier

will reject with high probability over its subsequent coin tosses. Note that this is a type

of soundness requirement for YES instances. Similarly, we say that a non-interactive

argument system is (adaptively) unambiguously sound if there is a prescribed proof for

every YES instance, and no PPTM cheating prover can come up with a pair (x, π̃) that

is accepted by the verifier unless x is a YES instance and π̃ is its prescribed proof.

The Sumcheck Protocol is known to be unambiguously sound [83]. For our results, we

need to assume that when the Fiat-Shamir Transform is applied to it, the resulting non-

interactive argument is adaptively unambiguously sound. We find the assumption that

unambiguous soundness is preserved by the Fiat-Shamir Transform to be a natural one.

We present supporting evidence for this assumption by demonstrating that it is true in the

random oracle model, see Lemma 7. We also show that for a particular instantiation of

the Fiat-Shamir Transform (which suffices for PPAD-hardness), adaptive unambiguous

soundness reduces to standard adaptive soundness. See Claim 4.1.

We show that adaptive soundness of the non-interactive sum-check protocol applied

to a particular language LSC implies adaptive unambiguous soundness for the same lan-

guage. Moreover, the protocol’s adaptive unambiguous soundness for LSC suffices for

(unambiguous) soundness of our incrementally-verifiable computation scheme. We begin

by defining LSC. The language is defined over tuples that include an instance to the

Sumcheck Protocol, a fixed prefix β1, . . . , βj ∈ F, and a fixed partial transcript of the

Sumcheck Protocol. A tuple is of the form

(F, y, f, β1, . . . , βj, α̃j+1, βj+1, . . . , α̃i+j),

where i, j ∈ {0, . . . , n} and their sum is at most n. The language is defined as follows:

1. When i = j = 0, this is simply a standard input for the Sumcheck Protocol, and the

tuple is in the language if and only if indeed the sum of f over all 2n inputs equals

y.

2. For j ≥ 1 and i = 0, the tuple is in the language if and only if the sum over all 2n−i

assignments with prefix β1, . . . , βj equals y.

3. For general j and i ≥ 1, the tuple is in the language if and only if the final prover

message α̃i+j is consistent with the prescribed (honest) prover’s message, given

the fixed prefix β1, . . . , βj and the verifier’s messages βi+1, . . . , βi+j−1 (there is no

condition on y or on the prior prover messages, only the last one matters).3

3Here, when we refer to the prescribed prover, we are ignoring the fact that the actual claim being

proved (i.e. the value of y) might be false, as the prescribed prover in the sum check protocol does not

need to use the value y to compute its messages.
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With this language in mind, we can view each round of the sumcheck as reducing from a

claim that a tuple is in LSC, to a claim that a longer tuple is in LSC. Soundness means

that if the initial claim is false, then w.h.p. the new claim is also false. Unambiguity

means that even if the initial instance was in the language, if the prover doesn’t follow

the prescribed strategy, then w.h.p. over the verifier’s choice of βi, the new instance is not

in the language.

For our incrementally-verifiable computation scheme, it suffices to assume that the

non-interactive sumcheck is an adaptively unambiguously sound non-interactive argument

system for the language LSC (see the full construction in §4.2). The following claim shows

that in fact it suffices to assume adaptive soundness, which itself implies unambiguity.

Claim 4.1. If the Sumcheck Protocol is an adaptively sound argument system for the

language LSC, then it is also an adaptively unambiguously sound argument system for

LSC.

Proof. Assume for contradiction that there exists an adversary A that, given a hash

function H, can find with noticeable probability an instance x ∈ LSC, whose prescribed

proof is π, and an accepting proof π̃ 6= π. Let

x = (F, y, f, β1, . . . , βj,αj+1, βj+1, . . . ,αi+j),

and π̃ = (α̃i+j+1, . . . , α̃n). We can use A to break the adaptive soundness of the same

argument system, by picking a random index ` ∈ {i + j + 1, n}, and computing the

challenges: {
β̂k = H(x, β̂i+j, α̃i+j+1, β̂i+j+1, . . . , α̃k)

}`−1

k=i+j
.

The new instance is:

x′ =
(
x, β̂i+j, α̃i+j+1, β̂i+j+1, . . . , α̃`

)
.

The proof for this new instance is π′ := (α̃`+1, . . . , α̃n). By construction, if π̃ is an

accepting proof for x, then also π′ will be an accepting proof for x′. We claim that with

probability at least 1/n, however, x′ is a NO instance of LSC. To see this, let the prescribed

proof be π = (αi+j+1, . . . ,αn). Finally, let `∗ be the smallest index s.t. α̃i+`∗ 6= αi+`∗

(such a `∗ must exist because π̃ 6= π). It follows that the instance

x′ =
(
F, y, f,α1, β1, . . . ,αi, β̂i, α̃i+1, . . . , α̃i+`∗

)
is a NO instance for LSC. Thus, in the above reduction, when ` = `∗ the adversary finds

an accepting proof for a NO instance, and this happens with probability at least 1/n over

the choice of `.

4.2 The Sumcheck Protocol

The Sumcheck Protocol was introduced by Lund et al. [67] to show that #P is contained

in IP. In this section, we recall the original protocol (§4.2.1) and then describe the

non-interactive protocol that is obtained by applying the Fiat-Shamir Transform to the

interactive protocol (§4.2.2).
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4.2.1 Interactive Sumcheck Protocol

Fix a finite field F and a subset H ⊆ F (usually H = {0, 1}). In the original Sumcheck

Protocol, a (not necessarily efficient) prover takes as input an n-variate polynomial f :

Fn → F of degree at most d in each variable (think of d as a constant significantly smaller

than |F|). The prover’s goal is to convince a verifier that∑
z∈Hn

f(z) = y,

for some value y ∈ F. The verifier only has oracle access to f , and is given the constant y ∈
F. The verifier is allowed a single oracle query to f , and runs in time poly(n, d, log2(|F|)).
In Figure 4.1, we review the standard Sumcheck Protocol from [67], denoted by(

PSC(y, f),VfSC(y)
)
.

PSC is an interactive Turing machine, and VSC is a probabilistic interactive Turing machine

with oracle access to f : Fn → F. The prover PSC(y, f) runs in time poly(|F|n).4 The

verifier VgSC(y) runs in time poly(n, log2(|F|), d) and queries the oracle f at a single point.

The communication complexity is poly(n, log2(|F|), d), and the total number of bits sent

from the verifier to the prover is O(n · log2|F|). Moreover, this protocol is public-coin; i.e.,

all the messages sent by the verifier are truly random and consist of the verifier’s random

coin tosses.

Sumcheck Protocol for LSC. Recall the definition of the language LSC from §4.1.2.

Although the variant of Sumcheck Protocol described above works for “plain” LSC —

i.e., LSC without a prefix and partial transcript and hence i = j = 0, — it can be easily

adapted for “full” LSC where i and j can be both greater than zero, which is required

for our application.5 As a first step, we describe in Figure 4.2 the protocol for “prefixed”

LSC — i.e., LSC with j > 0 but i = 0. We show in Theorem 5 that this protocol is

an unambiguously-sound interactive proof system (for prefixed LSC). The sketch of the

protocol and the corresponding theorem for full LSC then follows Theorem 5. We remark

that in both the protocols the verifier is given the polynomial f , unlike oracle-access

as in the original Sumcheck Protocol in Figure 4.1. Thus, the verifier’s run-time can

be poly(n, d, log2(|F|), |f |), where |f | refers to the size of the polynomial f under some

appropriate representation (e.g., arithmetic circuits).

Theorem 5. Let f : Fn → F be an n-variate polynomial of degree at most d < |F| in each

variable. Sumcheck Protocol, described in Figure 4.2, is a (d(n − j)/|F|)-unambiguously

sound interactive proof system for prefixed LSC (i.e., with j > 0 and i = 0). That is, it

satisfies the following three properties.

4Here we assume the prover’s input is a description of the function f , from which f can be computed

(on any input) in time poly(n).
5We remark that the language LSC in its most general form (i.e., with i, j > 0) is used only in

Claim 4.1. In the discussions that follow, the prefixed language suffices.
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Interactive Sumcheck Protocol for
∑

z1,...,zn∈H f(z1, . . . , zn) = y

Parameters:

1. F (field), n (dimension), d (individual degree)

2. H ⊂ F

Protocol:

1. Set y0 = y

2. For i ← 1, . . . , n: (at the beginning of round i, both PSC and VSC know

yi−1 and β1, . . . , βi−1 ∈ F)

(a) PSC computes the degree-d univariate polynomial

gi(x) :=
∑

zi+1,...,zn∈H

f(β1, . . . , βi−1, x, zi+1, . . . , zn),

PSC sends this polynomial to VSC by specifying its values on the first

d+ 1 field elements, i.e. by sending αi = {αi,γ = gi(γ)}dγ=0.

(b) VSC receives d + 1 field elements α̃i = {α̃i,γ}dγ=0, and interpolates the

(unique) degree-d polynomial g̃i s.t. ∀γ ∈ {0, . . . , d}, g̃i(γ) = α̃i,γ
VSC then checks that: ∑

x∈H

g̃i(x) = yi−1.

If not, then VSC rejects.

(c) VSC chooses a random element βi ∈R F, yi = g̃i(βi), and sends βi to

PSC.

3. VSC uses a single oracle call to f to check that yn = f(β1, . . . , βn).

Figure 4.1: Sumcheck Protocol (PSC(y, f),VfSC(y)) from [67].

• Prescribed Completeness: For every y ∈ F and β ∈ Fj,

Pr [(PSC(y, f,β),VSC(y, f,β)) = LSC(y, f,β, ∅)] = 1.

• Soundness: If
∑
z∈Hn−j f(β, z) 6= y then for every (computationally unbounded)

interactive Turing machine P̃,

Pr
[(

P̃(y, f,β),VSC(y, f,β)
)

= 1
]
≤ d(n− j)

|F|
.

• Unambiguity: If
∑
z∈Hn−j f(β, z) = y then for every (computationally unbounded)

interactive Turing machine P̃ that deviates from the protocol, VSC accepts with prob-

ability at most d(n− j)/|F|.
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Interactive β-Prefix Sumcheck Protocol for
∑

zj+1,...,zn∈H f(β, zj+1, . . . , zn) = y

Parameters:

1. F (field), n (dimension), d (individual degree)

2. H ⊂ F

Protocol:

1. Let β = (β1, . . . , βj) and set yj = y and

2. For i← j+ 1, . . . , n: (at the beginning of round i, both PSC and VSC know

yi−1 and β1, . . . , βi−1 ∈ F)

(a) PSC computes the degree-d univariate polynomial

gi(x) :=
∑

zi+1,...,zn∈H

f(β1, . . . , βi−1, x, zi+1, . . . , zn),

PSC sends this polynomial to VSC by specifying its values on the first

d+ 1 field elements, i.e. by sending αi = {αi,γ = gi(γ)}dγ=0.

(b) VSC receives d + 1 field elements α̃i = {α̃i,γ}dγ=0, and interpolates the

(unique) degree-d polynomial g̃i s.t. ∀γ ∈ {0, . . . , d}, g̃i(γ) = α̃i,γ
VSC then checks that: ∑

x∈H

g̃i(x) = yi−1.

If not, then VSC rejects.

(c) VSC chooses a random element βi ∈R F, sets yi = g̃i(βi), and sends βi
to PSC.

3. VSC checks that yn = f(β1, . . . , βn).

Figure 4.2: β-prefix Sumcheck Protocol (PSC(y, f,β),VSC(y, f,β))

Proof. We show below that completeness, soundness and unambiguity holds for j = 0 —

the argument when j > 0 follows similarly by fixing the prefix β.

Prescribed completeness follows from the protocol description. As for the sound-

ness, let f : Fn → F be a polynomial of degree at most d in each variable, such that∑
z∈Hn f(z) 6= y. Assume for the sake of contradiction that there exists a cheating prover

P̃ for which

s := Pr
[(

P̃(y, f),VSC(y, f)
)

= 1
]
>
dn

|F|
.

Recall that in the Sumcheck Protocol the prover sends n univariate polynomials seqg1gn,

and the verifier sends n− 1 random field elements β1, . . . , βn−1 ∈ F. For every i ∈ [1, n],
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let Ai denote the event that

gi(x) =
∑

zi+1,...,zn∈H

f(β1, . . . , βi−1, x, zi+1, . . . , zn).

Let S denote the event that
(
P̃(y, f),VSC(y, f)

)
= 1. Notice that Pr[S|A1∧ . . .∧An] = 0.

We will reach a contradiction by proving that

Pr[S|A1 ∧ . . . ∧ An] ≥ s− dn

|F|
.

To this end, we prove by (reverse) induction that for every j ∈ [1, n],

Pr[S|Aj ∧ . . . ∧ An] ≥ s− (n− j + 1)d

|F|
. (4.1)

For j = n,

s = Pr[S] ≤ Pr[S|¬(An)] + Pr[S|An] ≤ d/|F|+ Pr[S|An],

where the latter inequality follows by the Schwartz-Zippel lemma, i.e. the fact that every

two distinct univariate polynomials of degree ≤ d over F agree in at most d points. Thus,

Pr[S|An] ≥ s− d/|F|.

Assume that Equation (4.1) holds for j, and we will show that it holds for j − 1.

s− (n− j + 1)d

|F|
≤ Pr[S|Aj ∧ . . . ∧ An]

≤ Pr[S|¬(Aj−1) ∧ Aj ∧ . . . ∧ An] + Pr[S|Aj−1 ∧ Aj ∧ . . . ∧ An]

≤ d/|F|+ Pr[S|Aj−1 ∧ . . . ∧ An],

which implies that

Pr[S|Aj−1 ∧ . . . ∧ An] ≥ s− (n− (j − 1) + 1)d

|F|
,

as desired.

Finally, to prove unambiguity, we describe the proof in [83]. Let f : Fn → F be a

polynomial of degree at most d in each variable, such that
∑
z∈Hn f(z) = y, and let P̃ be a

cheating prover. Consider i∗ ∈ [n] and β1, . . . , βi∗−1 ∈ F be the first round that P̃ deviates

from the prescribed strategy. i.e. ∀i < i∗, gi ≡ g̃i and gi∗ 6≡ g̃i∗ , where gi ≡ g̃i denotes that

two polynomials gi and g̃i are equivalent. Here gi is the output of the prescribed prover

PSC on input β1, . . . , βi−1 and g̃i is the output of P̃ on the same input.

Claim 5.1. Let i ∈ {i∗, . . . , n− 1} and βi∗ , . . . , βi−1 ∈ F and suppose gi 6≡ g̃i. Then with

probability at least (1− d/|F|) over the choice of βi, either VSC rejects or gi+1 6≡ g̃i+1.
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Proof. By the Schwartz-Zippel lemma, since gi and g̃i have degree at most d, gi(βi) 6=
g̃i(βi) with probability (1− d/|F|) over the choice of βi. Suppose this is the case, and yet

gi+1 ≡ g̃i+1, then ∑
x∈H

g̃i+1(x) =
∑
x∈H

gi+1(x) = gi(βi) 6= g̃i(βi) = yi.

Thus VSC would reject when it makes the check to see if
∑

x∈H g̃i+1(x) = yi.

Applying union bound over all i ∈ {i∗, . . . , n− 1} for the above claim, we have that

with probability at least (1− (n− 1) · d/|F|) over the choice of βi∗ , . . . , βi−1 either VSC

rejects or gn 6≡ g̃n. If gn 6≡ g̃n, by the Schwartz-Zippel lemma, with probability (1− d/|F|)
over the choice of βn,

g̃n(βn) 6= gn(βn) = f(β1, . . . , βn).

Thus when VSC makes the oracle call to check if yn = f(β1, . . . , βn), it will reject. There-

fore, by a further application of the union bound, with probability at least (1− nd/|F|)
either VSC rejects or yn = g̃n(βn) 6= gn(βn) = f(β1, . . . , βn).

The full Sumcheck Protocol. When i = 0, the Sumcheck Protocol for full LSC works

exactly as described in Figure 4.2. Since i > 0 corresponds to the case where the Sumcheck

Protocol has been executed partially to the point where the prover sends the message α̃i+j,

the full Sumcheck Protocol just continues the protocol from that point onwards. Hence

the first message in the full Sumcheck Protocol is from the verifier to the prover, unlike

the normal Sumcheck Protocol. Let’s denote this protocol by

(PSC(y, f,β, τ ),VSC(y, f,β, τ )) ,

where τ = α̃j+1, βj+1, . . . , α̃j+i is the fixed partial transcript. In Theorem 6 below, we

capture the fact that the protocol just described is an unambiguously sound interactive

proof for LSC — the proof is similar to that of Theorem 5 and is omitted.

Theorem 6. Let f : Fn → F be an n-variate polynomial of degree at most d < |F| in

each variable. The Sumcheck Protocol (PSC(y, f,β, τ ),VSC(y, f,β, τ )) described above is

a (d(n− i− j)/|F|)-unambiguously sound interactive proof system for LSC.

4.2.2 Non-Interactive Sumcheck Protocol

We consider the non-interactive version of the Sumcheck Protocol obtained by applying

the Fiat-Shamir Transform to the protocols from Figure 4.2 and Theorem 6. To be exact,

the verifier’s “challenges” βi in the non-interactive protocol are obtained by applying a

hash function H : {0, 1}∗ → F to the transcript thus far, which is comprised of the

instance and the prover’s messages up to that round.

The non-interactive Sumcheck Protocol (PFS(y, f,β),VFS(y, f,β)) corresponding to

Figure 4.2 is given in Figure 4.3. The algorithm PFS runs in time poly(|F|n). The ver-

ification algorithm VFS runs in time poly(n, |f |) and space O(n · log2(|F|)). The size of the
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proof isO(n·log2(|F|)). The non-interactive Sumcheck Protocol (PFS(y, f,β, τ ),VFS(y, f,β, τ ))

corresponding to the protocol from Theorem 6 works similar to the protocol in Figure 4.2

and hence incurs similar costs.

Assumption on Fiat-Shamir. The assumption that underlies our main theorem per-

tains to the soundness of the collapsed protocol

(PFS(y, f,β, τ ),VFS(y, f,β, τ )).

In particular, we assume that the Fiat-Shamir Transform is adaptively sound when ap-

plied to the interactive Sumcheck Protocol and, as a result, that the collapsed protocol

(PFS(y, f,β, τ ),VFS(y, f,β, τ )) is an adaptively sound non-interactive proof system for

the language LSC. By Claim 5.1, it follows that the collapsed protocol is adaptively un-

ambiguously sound as required for the application in §4.3. In Lemma 7 below, we show

that the assumption holds for the protocol described in Figure 4.3 with respect to random

oracles. This also holds for the protocol from Theorem 6 as claimed in Lemma 8. In fact

we directly show the stronger property of unambiguous soundness.

Assumption 3. The Fiat-Shamir Transform is unambiguously sound for the Sumcheck

Protocol from Theorem 6. In other words, there exists a family of hash functions H such

that when instantiated with (random) H : {0, 1}∗ → F from H, the non-interactive Sum-

check Protocol (PFS(y, f,β, τ ),VFS(y, f,β, τ )) from Theorem 6 is (δ, ε)-unambiguously

sound for the language LSC for some δ and ε that are negligible in n.

Lemma 7. Let f : Fn → F be an n-variate polynomial of degree at most d in each

variable and β = (β1, . . . , βj) ∈ Fj be any prefix. Let (PHFS(y, f,β),VHFS(y, f,β)) denote

the non-interactive Sumcheck Protocol obtained by instantiating the protocol described in

Figure 4.3 with a random oracle H. Then (PHFS,V
H
FS) is a (Qd/|F|)-unambiguously sound

non-interactive proof system for prefixed language LSC, where Q = Q(n) denotes the

number of queries made to the random oracle. That is, it satisfies the following three

properties.

• Prescribed Completeness: For every y,

Pr
[
VHFS((y, f,β),PHFS(y, f,β)) = LSC(y, f,β, ∅)

]
= 1.

• Soundness: For every (computationally unbounded) cheating prover strategy P̃ that

makes at most Q queries to the random oracle,

Pr

[
VHFS((y, f,β), π̃) = 1

((y, f,β), π̃)← P̃
H∑

z∈Hn−j f(β, z) 6= y

]
≤ Qd

|F|
.

• Unambiguity: For every (computationally unbounded) cheating prover strategy P̃

that makes at most Q queries to the random oracle,

Pr

 VHFS((y, f,β), π̃) = 1

((y, f,β), π̃)← P̃
H

π ← PHFS(y, f,β)

π̃ 6= π,
∑
z∈Hn−j f(β, z) = y

 ≤ Qd

|F|
.
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Non-Interactive β-Prefix Sumcheck Protocol

Parameters:

1. F (field), n (dimension), d (individual degree) and H ⊂ F

2. hash function H : {0, 1}∗ → F

PFS(y, f,β) :

1. Let β = (β1, . . . , βj) and set yj = y.

2. For i← j + 1, . . . , n:

(a) Compute the degree-d univariate polynomial

gi(x) :=
∑

zi+1,...,zn∈H

f(β, βj+1, . . . , βi−1, x, zi+1, . . . , zn).

Let αi = {αi,γ = gi(γ)}dγ=0 be the values of gi on the first d + 1 field

elements.

(b) Compute

βi = H(F, y, f,β, {αj+1,γ}dγ=0, βj+1, . . . , βi−1, {αi,γ}dγ=0)

and set yi = gi(βi).

3. Output π =
(
{αj+1,γ}dγ=0, . . . , {αn,γ}

d
γ=0

)
VFS((y, f,β), {α̃j+1,γ}dγ=0, . . . , {α̃n,γ}

d
γ=0) :

1. For β = (β1, . . . , βj), set yj = y.

2. For i← j + 1, . . . , n:

(a) Use the d+1 field elements {α̃i,γ}dγ=0 to interpolate the (unique) degree-

d polynomial g̃i s.t. ∀γ ∈ {0, . . . , d}, g̃i(γ) = α̃i,γ.

Check that:
∑

x∈H g̃i(x) = yi−1. If not, then reject.

(b) Compute

βi = H(F, y, f,β, {α̃j+1,γ}dγ=0, βj+1, . . . , βi−1, {α̃i,γ}dγ=0)

and set yi = g̃i(βi).

3. If yn = f(β1, . . . , βn) then accept and otherwise reject.

Figure 4.3: Non-interactive version of the Sumcheck Protocol (PSC(y, f,β),VSC(y, f,β))

from Figure 4.2.
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Lemma 8. Let f : Fn → F be an n-variate polynomial of degree at most d in each variable,

β = (β1, . . . , βj) ∈ Fj be any prefix, and τ = α̃j+1, βj+1, . . . , α̃j+i be any fixed partial tran-

script. Let (PHFS(y, f,β, τ ),VHFS(y, f,β, τ )) denote the non-interactive Sumcheck Protocol

obtained by instantiating the protocol described in Theorem 6 with a random oracle H.

Then (PHFS(y, f,β, τ ),VHFS(y, f,β, τ )) is a (Qd/|F|)-unambiguously sound non-interactive

proof system for the language LSC, where Q = Q(n) denotes the number of queries made

to the random oracle.

Proof (of Lemma 7). A query is a tuple of the form

(F, y, f,β, α̃j+1, β̃j+1, . . . , β̃`−1, α̃`),

where f is a polynomial over the field F, y ∈ F, β = (β1, . . . , βj) is a prefix, and α̃k ∈ Fd+1

and β̃k ∈ F for k ∈ [j + 1, `] where ` ∈ [n− j]. For a statement (y, f,β) (either in or not

in the language LSC), we consider the output αj+1, . . . ,αn of the prescribed prover PFS

when invoked on (y, f,β) and the associated hash values βj+1, . . . , β`−1. Let

β` := H(F, y, f,β,αj+1, βj+1, . . . , β`−1,α`) and β̃` := H(F, y, f,β, α̃j+1, β̃j+1, . . . , α̃`)).

Also, let g`(x) (resp., g̃`(x)) denote the unique degree-d polynomial obtained by interpo-

lating the field elements in α` (resp., α̃`). We say that the query

(y, f,β, α̃j+1, β̃j+1, . . . , β̃`−1, α̃`)

is bad if

1. α̃` 6= α` (which implies that the polynomial g`(x) 6= g̃`(x)) and

2. g̃`(β̃`) = g`(β`).

Since β` and β̃` are outputs of a random oracle and the polynomials g`(x), g̃`(x) are

different, the probability of a particular query being bad is at most d/|F| by the Schwartz-

Zippel lemma. Therefore by a union bound over all the queries, the probability that the

adversary made a bad query during its execution is at most Qd/|F|.

Note that in the absence of bad queries, denoted ¬bad, an adversary cannot break

either soundness or unambiguity of the non-interactive Sumcheck Protocol. It follows

that the probability the adversary breaks the soundness or unambiguity is also at most

Qd/|F|. More formally, let break denote the event that an adversary that makes at most Q

queries to the random oracle finds a proof that breaks either the soundness or unambiguity

of the non-interactive such check protocol. The probability of break can be bounded as

follows:

Pr[break] = Pr[break ∧ (bad ∨ ¬bad)]

≤ Pr[break ∧ bad] + Pr[break ∧ ¬bad]

= Pr[break|bad] · Pr[bad] ≤ Qd/|F|.



79

4.3 The Reduction

In this section, we present an RSVL instance constructed using the non-interactive Sum-

check Protocol (PFS,VFS) for the language LSC from §4.2.2 as a building block. The

proposed RSVL instance counts — incrementally and verifiably — the number of satis-

fying assignments (i.e., the sum) of an n-variate polynomial f with individual degree at

most d. To be specific, the main line in the RSVL instance starts at a fixed initial state

s0 (the source) and ends at a final state sL (the sink) comprised of the sum

y =
∑

z∈{0,1}n
f(z),

as well as a proof π of y’s correctness. The i-th (intermediate) state along the path from s0

to sL, which we denote by si, consists of appropriately-chosen prefix sums and associated

proofs. (To be precise, each state also includes an index t ∈ [d+ 1]≤n that is determined

by its counter i.) The successor S performs single steps, receiving as input the current

state si, and computing the next state si+1. The verification procedure V, which takes as

input a state s and a counter i and accepts if s is the i-th state.

Since the sink will contain the overall sum y with a proof, any adversary that attempts

to solve the RSVL instance by finding a type (i) solution (see, Definition 16) must

compute the sum for f , the correctness of which can be verified using the proof. On

the other hand, it is intractable for an adversary to find a type (ii) solution (i.e., a false

positive (s′, i) such that s′ 6= si but V accepts s′ as the i-th vertex on the RSVL line)

because of the unambiguous soundness of the non-interactive sumcheck proof system. The

above is formally stated in the following theorem.

Theorem 7 (Main Theorem). For a parameter n, fix a finite field F of sufficiently large

size p (say O(2n)). Let f be an n-variate polynomial over F of individual degree at most

d. Pick a hash function H uniformly at random from a family H. Let

S := Sf,H : {0, 1}m → {0, 1}m and V := Vf,H : {0, 1}m × [L]

be constructed as in Algorithm 7 with

m = m(n, d, p) = (d+ 1)n log2(p) and L = L(n, d) =
∑
j∈[n]

(d+ 2)j.

Given an adversary A that solves instances from the RSVL family

{(S,V, (0n, f(0n), ∅), L)}n∈N (4.2)

in polynomial time TA = TA(n) and a non-negligible probability ε = ε(n), it is possible to

either

• find the sum
∑
z∈{0,1}n f(z) in time O(TA) with probability ε, or

• break the unambiguous soundness of the non-interactive Sumcheck Protocol (As-

sumption 3) with probability ε/(d+ 1) · n.
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The proof of the theorem is given in §4.3.3. The main technical component of our

reduction are the successor circuit S and the verifier circuit V, described in §4.3.1 and

§4.3.2. S an V, together, implement the incrementally-verifiable counter for statements of

size 2n. They are defined using a sequence of circuits

(Sn,Vn), . . . , (S0,V0),

where (Sn−j+1,Vn−j+1) is an incrementally-verifiable counter for statements of size 2n−j+1

and is implemented recursively using (Sn−j,Vn−j). At the base of the recursion, (S0,V0)

computes sums of size 1 and is therefore trivial: it takes a single step, uses poly(n)

memory and has an “empty” proof. The circuits (S,V) simply invoke (Sn,Vn).

We implement these procedures using circuits and to ensure that the size of these

circuits does not blow up, we have to exploit the recursive structure of Sumcheck Protocol.

In our construction, if (Sn−j,Vn−j) takes L steps, uses m bits of memory, and generates

a final proof of size P bits, then (Sn−j+1,Vn−j+1) takes O(dL) steps, uses m + O(dP ) +

poly(n) memory, and has a final proof of size P + poly(n). On unwinding the recursion,

it can be shown that (S,V) runs for 2O(n) steps, uses poly(n) space and has proof size

of poly(n). But most importantly S and V are polynomial-sized circuits, and therefore

each step can be carried out in poly(n) time. In other words, we get an RSVL instance

describing a directed graph with 2O(n) vertices each with a label of size poly(n), where

the successor and verifier functions have efficient descriptions.

4.3.1 The Recursive Construction

The circuits (Sn−j+1,Vn−j+1) in our incrementally-verifiable counting procedure have hard-

wired into them

1. f , an n-variate polynomial over a field F of individual degree at most d (described

as an arithmetic circuit of size poly(n) and degree d), and

2. H, the description of a hash function from the family H.

It takes as its input a prefix β = (β1, . . . , βj−1) ∈ Fj−1 (and also the transcript τ as

explained below). The goal of the procedure is computing the value y of the sum with

prefix β, along with a sumcheck proof for this value.

In order to describe how (Sn−j+1,Vn−j+1) is implemented using (Sn−j,Vn−j), we need to

take a closer look at the non-interactive Sumcheck Protocol given in Figure 4.3. Suppose

that the prover PFS has been invoked on the β = (β1, . . . , βj−1)-prefix sum∑
z∈{0,1}n−j+1

f(β, z) = yj−1, (4.3)

which is a statement of size 2n−j+1. At the end of the first iteration, PFS reduces this

sumcheck to checking a smaller (β, σ)-prefix sum yj = gj(σ) of size 2n−j, where gj(x) is

the univariate polynomial ∑
z∈{0,1}n−j

f(β, x,z)
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specified by the field elements αj,0 = gj(0), . . . , αj,d = gj(d), and σ is the “challenge”, i.e.,

a hash value depending on αj,0, . . . , αj,d.

Now, suppose we are given incrementally-verifiable procedures (Sn−j,Vn−j) to compute

sums of size 2n−j, which takes L(n−j) steps, uses m(n−j) memory, and has a final proof

of size P (n−j) bits. Our construction of (Sn−j+1,Vn−j+1) takes (d+2)·L(n−j) steps, uses

m(n−j)+(d+1)·P (n−j) memory, and has a final proof of size P (n−j)+(d+1) log2(p) bits

(where, if you recall, p denotes the size of the field F). On unwinding the above recursive

expressions for L, m and P , we conclude that (Sn,Vn) is procedure for computing sums

of size 2n with 2O(n) steps and poly(n) space, and the final proof is of size poly(n).

To achieve this construction, we exploit the structure of Sumcheck Protocol. Note that

the polynomial gj(x) can itself be recursively computed with proof. To be more precise,

for each γ ∈ [d], we sequentially run (Sn−j,Vn−j) to compute the valuations αj+1,γ with a

proof certifying the sum ∑
z∈{0,1}n−j−1

f(β, γ, z) = αj+1,γ = gj(γ) (4.4)

Once we possess αj+1,0, . . . , αj+1,d after the (d+ 1) sequential applications of (Sn−j,Vn−j),

the challenge σ can be computed and subsequently the prefix-sum∑
z∈{0,1}n−j−1

f(β, σ, z) = yj = gj(σ) (4.5)

for the next round can also be computed using (Sn−j,Vn−j) in an incrementally-verifiable

manner. In other words, we have reduced computing the proof for the β-prefix sum given

in eq.(4.3) to (i) (d + 1) new sumchecks given in eq.(4.4) concerning the computation of

polynomial gj(x), and (ii) the second iteration of the original sumcheck given in eq.(4.5),

which serves as an incrementally-verifiable proof-merging procedure. Moreover, all the

(d + 2) sumchecks above involve work proportional to the computation of sumchecks of

size 2n−j−1, and therefore they can be computed using (Sn−j,Vn−j).

The working of the procedure (Sn−j+1,Vn−j+1) on an input a prefix β = (β1, . . . , βj−1)

can therefore be described on a high level as follows.

1. Compute the polynomial gj(x), represented by the field elements {αj,γ = gj(γ)}dγ=0,

incrementally and verifiably by invoking (Sn−j,Vn−j) on (β, γ)

2. Compute the β-prefix sum by adding (β, 0)- and (β, 1)-prefix sums αj,0 and αj,1

3. Calculate the “challenge” σ and compute the partial proof for the original sumcheck:

compute the proof for the (β, σ)-prefix sum gj(σ) using (Sn−j,Vn−j)

4. Obtain the “merged proof” for the β-prefix sum by appending {αj,γ}dγ=0 to the proof

for (β, σ)-prefix sum

5. Return the β-prefix sum with proof

Keeping the above recursive procedure in mind, we proceed to detail the recursive suc-

cessor and verifier circuits Sn−j+1 and Vn−j+1.
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The recursive successor. Recall that (Sn−j+1,Vn−j+1), on input a prefix β = (β0, . . . , βj−1),

calls the procedure (Sn−j,Vn−j) sequentially d + 2 times. This results in a sequence of

states s0, . . . , sL(n−j+1), where sL(n−j+1) is comprised of the sum

y =
∑

z∈{0,1}n−j+1

f(β, z)

as well as a proof π of y’s correctness. Since the invocations of (Sn−j,Vn−j) are sequential,

an intermediate state si along the path from s0 to sL(n−j+1), is comprised of at most (d+2)

“sub-states”, one for each invocation of (Sn−j,Vn−j).

In more details, each state si is associated with an index t ∈ [d + 1]≤(n−j+1) which

is determined by the counter i. Loosely speaking, the index t of the i-th state si is the

i-th vertex in the perfect (d+ 2)-dary tree that the standard depth-first search visits for

the last time (see the discussion in §4.3.2 for more details). If t = (t1, . . . , t`) (where

` ∈ [n− j + 1]) then si consists of t1 sub-states, where

• the first t1 − 1 are final, i.e., correspond to full executions of (Sn−j,Vn−j), and

therefore consist of a single tuple of the form (y, π), and

• the t1-th sub-state is either final and consists of a single tuple (y, π) as in the

previous case or is itself intermediate (i.e., not corresponding to a full execution of

(Sn−j,Vn−j)) and therefore consists of a sequence of tuples of the form (y, π).

The successor circuit Sn−j+1, on input a prefix β and the current state s with index t,

computes the next state. Depending on the conditions of sub-states in s, it takes one of

the following actions:

• Case A: The state s consists of d + 2 final sub-states of (Sn−j,Vn−j). Such sub-

states contain the information necessary to compute the sum for the prefix β and

assemble its proof (by merging). As a result, the next state is the final state of

(Sn−j+1,Vn−j+1).

• Case B: The state s consists of t1 < d + 2 final sub-states of (Sn−j,Vn−j). In this

case, Sn−j+1 initiates the next (i.e., t1 + 1-th) execution of (Sn−j,Vn−j).

• Case C: The t1-th sub-state s′ is intermediate. Here, Sn−j+1 simply calls the succes-

sor Sn−j to increment s′ — and as a result the state s — by one step.

The resulting construction of Sn−j+1 is formally described in Algorithm 5. There we

have also addressed a minor detail (which also applies to Vn−j+1) that we have up to

now brushed under the rug: in order to compute the challenges σ, the counters need

some additional information. To this end, Sn−j+1 receives as an auxiliary argument the

protocol transcript that serves as the input to H, denoted by τ . From the description

of the non-interactive Sumcheck Protocol in Figure 4.3, τ should contain the following

information:
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1. the original statement (F, f, y,β), left empty if the sum y has not been computed

yet, and

2. a partial proof π for β-prefix sum, which consists of all the values αi and βi that

have been computed up to the current iteration (as specified in the description of

PFS).

The recursive verifier. Given as input the prefix β, the state s and an index t, the

verifier Vn−j+1 ensures that s equals the intermediate state si for (Sn−j+1,Vn−j+1), where

i is the counter that is associated with t.

If the state s is final for (Sn−j+1,Vn−j+1) then t = ε and s is a single tuple of the form

(y, π). This can be verified directly by invoking VFS.

Otherwise s consists of at most (d+2) (final or intermediate) sub-states of (Sn−j,Vn−j),

and Vn−j+1 verifies each of these sub-states by invoking Vn−j. To be precise, for each sub-

state s′ in s, Vn−j+1 first computes

1. the prefix β′ for s′, which is either (β, γ) for γ ∈ [d], or (β, σ) for a challenge σ, and

2. the index t′ for β′, which is either ε in case s′ is final for (Sn−j,Vn−j), or (t2, . . . , t`)

otherwise.

Next, it checks the validity of the sub-state s′ recursively by invoking Vn−j.

The formal description of Vn−j+1 is given in Algorithm 6. Similarly to the successor

Sn−j+1, Vn−j+1 also receives the transcript as input to ensure that it possesses the necessary

information to compute the challenges.

4.3.2 The RSVL Instance

The label of the i-th vertex vi in the proposed RSVL instance is a tuple (t, si), where

si ∈ F∗ is a state and t ∈ [d+ 1]≤n its index determined by the counter i. To be precise, t

is the (address of) i-th vertex in the perfect (d+ 2)-dary tree6 that the depth-first search

leaves (i.e. visits for the final time). To map a counter i ∈ [L] to an index t ∈ [d + 1]≤n,

we use a bijective map DFS(·) (Note that this makes sense only if T =
∣∣[d+ 1]≤n

∣∣), which

we show below.). Its inverse is denoted by DFS−1(·). Thus, the main RSVL line consists

of the sequence of labels

(0n, s1), (0n−11, s2), (0n−1, s3), . . . , (11, sL−2), (1, sL−1), (ε, sL).

The successor and verifier circuits (S,V) for the RSVL instance can now be imple-

mented using (Sn,Vn) as shown in Algorithm 7. In short, on input a counter i and a

label (t, s), the verifier circuit V simply checks if t matches DFS(i) and then invokes the

6A (d + 2)-ary tree is called perfect if all its interior nodes have (d + 2) children and all leaves have

the same depth.
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Recursive successor circuit Sn−j+1(β, t, s, τ )

Hardwired

1. an n-variate polynomial f of individual degree d over F

2. the description of a hash function H ∈ H

Input

1. a prefix β = (β1, . . . , βj−1) ∈ Fj−1

2. an index t = (t1, . . . , t`) ∈ [d+ 1]≤(n−j+1)

3. a state s ∈ F∗ parsed as a set of pairs of prefix sums and proofs

{(y0, π0), (y1, π1), . . . , }

4. a transcript τ containing the statement and partial proofs

Output the next state

Base Case S0(β, ε, ∅, ∅): Return (f(β), ∅)
Recursion

1. If t = ε and s 6= ∅ return s (already in final state: self-loop)

2. If t = d+ 1 then return {yγ}dγ=0 appended to πd+1 (Case A: merge)

3. Compute sub-state s′ by truncating {(yγ, πγ)}t1−1
γ=0 from s

4. Set t′ := (t2, . . . , t`) as the index of the sub-state s′

5. If t = d or t1 = d+ 1: increment/initialise d+ 2-th sub-state

(a) If τ = ∅ then initialise with statement τ := (F, y0 + y1, f,β) (Case B)

(b) Compute updated transcript τ ′ by appending {yγ}dγ=0 to τ (Case C)

(c) Compute the challenge σ := H(τ ) and append σ to τ

(d) Increment/initialise d+ 2-th sub-state: s′ := Sn−j((β, σ), t′, s′, τ )

(e) Append {(yγ, πγ)}dγ=0 back to s′ to update s and return it

Else t 6= d and t1 6= d+ 1

(a) If t ∈ [d− 1]: initialise t1 + 1-th sub-state (Case B)

i. Return {(yγ, πγ)}t1γ=0 appended to Sn−j((β, t1 + 1), ε, ∅, ∅)
(b) Else: increment t1-th sub-state (Case C)

i. Return {(yγ, πγ)}t1−1
γ=0 appended to Sn−j((β, t1), t′, s′, ∅)

Algorithm 5: The recursive successor circuit Sn−j+1.
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Recursive verifier circuit Vn−j+1(β, t, s, τ )

Hardwired

1. an n-variate polynomial f of individual degree d over F

2. the description of a hash function H ∈ H

Input

1. a prefix β = (β1, . . . , βj−1) ∈ Fj−1

2. an index t = (t1, . . . , t`) ∈ [d+ 1]≤(n−j+1)

3. a state s ∈ F∗ parsed as a set of pairs of prefix sums and proofs

{(y0, π0), (y1, π1), . . . , }

4. a transcript τ containing the statement and partial proofs

Output a bit indicating accept (1) or reject (0)

Base Case V0(β, ε, (y, ∅), ∅): Accept if y = f(β) and reject otherwise

Recursion

1. If t = ε return the bit b← VFS((yε, f,β), πε) (final state)

2. For γ ∈ [t1 − 1]: verify all final sub-states

Reject if Vn−j((β, γ), ε, (yγ, πγ), ∅) rejects

3. Compute t1-th sub-state s′ by truncating {(yγ, πγ)}t1−1
γ=0 from s

4. Set t′ := (t2, . . . , t`) as the index of the sub-state s′

5. If t1 = d+ 1

(a) If τ = ∅ then initialise with statement τ := (F, y0 + y1, f,β)

(b) Compute updated transcript τ ′ by appending {yγ}dγ=0 to τ

(c) Compute the challenge σ := H(τ ) and append σ to τ

(d) Reject if Vn−j((β, σ), t′, s′, τ ′) rejects

Otherwise t1 < d+ 1

(a) Reject if Vn−j((β, t1), t′, s′, ∅) rejects

6. Accept

Algorithm 6: The recursive verifier circuit Vn−j+1.
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recursive verifier circuit Vn on the state s and the index t. On the other hand, on input

a label (t, s), the successor S first ensures that s is indeed the i-th intermediate state by

checking its correctness using V. Then it increments the state by calling the recursive

successor function Sn. It returns this new state along with an incremented index as the

next label.

Efficiency. We argue that S and V are both poly(n)-sized circuits. Observe that for

Sn−j+1 at most one recursion Sn−j is active at any given point. The rest of the operations

within Sn−j+1 (viz., append, truncate, compute the hash etc.) are all efficient. Therefore

|Sn−j+1| < |Sn−j| + poly(n) with |S0| = poly(n), and consequently |S| = poly(n). A

similar argument holds for the verifier circuit V, taking into account the fact that even

though there are multiple active recursive calls within Vn−j+1, all but one are of depth 1.

This is true as the verification of the final sub-states in Vn−j is carried out by a single call

to VFS.

Parameters. Recall that L(n−j+1), m(n−j+1) and P (n−j+1) denote the number

of steps, amount of memory and the final proof size for (Sn−j+1,Vn−j+1), respectively.

Since Sn−j+1 runs Sn−j (d + 2) times and then takes one step for merging, we have

L(n− j + 1) = (d+ 2)L(n− j) + 1. By unwinding the recursion with T (0) = 1, we get

L = L(n, d) =
∑
j∈[n]

(d+ 2)j =
∣∣[d+ 1]≤n

∣∣.
For simplicity, assume that t ∈ F≤n. From the description of (S0,V0), it is clear that

m(0) = P (0) = log2(p) (where p, if you recall, denotes the size of the finite field F). From

the description of (Sn−j+1,Vn−j+1), we have m(n− j+ 1) ≤ m(n− j) + (d+ 1) log2(p) and

P (n− j + 1) = P (n− j) + (d+ 1) log2(p). On solving the recursion, we get m = m(n) ≤
(d+ 1)n log2(p) and P = P (n) ≤ (d+ 1)n log2(p).

4.3.3 Analysis

In this section we restate and prove the main theorem of the chapter.

Theorem 7 (Main Theorem). For a parameter n, fix a finite field F of sufficiently large

size p (say O(2n)). Let f be an n-variate polynomial over F of individual degree at most

d. Pick a hash function H uniformly at random from a family H. Let

S := Sf,H : {0, 1}m → {0, 1}m and V := Vf,H : {0, 1}m × [L]

be constructed as in Algorithm 7 with

m = m(n, d, p) = (d+ 1)n log2(p) and L = L(n, d) =
∑
j∈[n]

(d+ 2)j.

Given an adversary A that solves instances from the RSVL family

{(S,V, (0n, f(0n), ∅), L)}n∈N (4.2)
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Verifier circuit Vf,H(v, i)

Hardwired

1. an n-variate polynomial f of individual degree d over F

2. the description of a hash function H ∈ H

Input

1. a label v parsed as (t, s) ∈ [d+ 1]≤n × F∗ where t is the index and s the state

2. a counter i ∈ [L]

Output a bit indicating accept (1) or reject (0)

Procedure

1. Reject if t 6= DFS(i)

2. Return the bit b← Vn(ε, t, s, ∅)

Successor circuit Sf,H(v)

Hardwired see V

Input a label v parsed as (t, s) ∈ [d+ 1]≤n × F∗

Output the next label

Procedure

1. Set the index i := DFS−1(t)

2. Return v if V(v, i) rejects (self-loop)

3. Return (DFS(i+ 1), Sn(ε, t, s, ∅))

Algorithm 7: The verifier V and successor S for the RSVL instance.
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in polynomial time TA = TA(n) and a non-negligible probability ε = ε(n), it is possible to

either

• find the sum
∑
z∈{0,1}n f(z) in time O(TA) with probability ε, or

• break the unambiguous soundness of the non-interactive Sumcheck Protocol (As-

sumption 3) with probability ε/(d+ 1) · n.

Corollary 1. If #SAT is hard (in the worst case) then, relative to a random oracle,

there exists a hard distribution of End-of-Line instances.

Remark 8. In the original paper [31], we had claimed that the corollary holds just relative

to a random oracle, without the additional assumption on #SAT. The argument there

was that since P 6= NP relative to a random oracle [8], there exist hard instances of

#SAT (since P 6= #P). However, as pointed out in [11], we overlooked the fact that

we need an explicit representation of the #SAT instance in the Sumcheck Protocol. The

#SAT instance that results from the above argument may not have an explicit (succinct)

representation since it is defined relative to a random oracle.

Proof. Given a SAT formula Φ over n variables, a claim about the number of satisfying

assignments can be expressed as a sumcheck claim over F. The polynomial f is derived

from Φ, and the individual degree can be as low as 4. For this, we first transform Φ

into a 3SAT-4 formula, a 3CNF where each variable appears in at most 4 clauses. A

standard arithmetization yields an appropriate polynomial fΦ over the field. A reduction

from #SAT to RSVL (relative to a random oracle) follows Theorem 7 with f = fΦ, and

Lemma 7 with, for example, p = |F| = O(2n) and Q ∈ poly(n). The reduction from

RSVL to EOML given in Lemma 4 completes the corollary.

Proof (of Theorem 7). Recall that by Definition 16 the adversary A can solve an RSVL

instance in two ways: find either (i) the standard sink or (ii) a false positive i.e., a pair

(v, i) s.t. V(v, i) = 1 while Si((0n, f(0n), ∅)) 6= v.

Finding a type (i) solution is tantamount to solving the #SAT instance f since the

sink of the RSVL instance defined in eq.(4.2) is (ε, sL = (yL, πL)) and contains the number

of solutions to f in the form of yL. In the discussion below we rule out solutions of type

(ii) under Assumption 3. Taken together, the theorem follows.

Let v be of the form (t, {(ỹ1, π̃1), . . . , (ỹ`, π̃`)} and let

vi = Si(0n, f(0n), ∅) = (t, {(y1, π1), . . . , (y`, π`)})

be the correctly computed vertex. Also, let
{
β̃1, . . . , β̃`

}
and {β1, . . . ,β`} denote the

associated prefixes. We first establish that there exists at least one index k∗ ∈ [1, `] such

that the proof π̃k∗ breaks the unambiguous soundness of the non-interactive Sumcheck

Protocol.

Assume for contradiction that A violated neither soundness nor unambiguity in the

process of finding the type (ii) solution (v, i) s.t. V(v, i) = 1 but Si((0n, f(0n), ∅)) 6= v.
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We show that (v, i) could not have been a type (ii) solution. To this end, we establish

iteratively from k = 1 to k = ` that (ỹk, π̃k) = (yk, πk).

When Vn is invoked by V on (ε, t, s, ∅) it recurses until (ỹ1, π̃1) is a final sub-state for

some (Sn−j,Vn−j). At this point the validity of (ỹ1, π̃1) is checked using a single call to

VFS. Recall that it is assumed that neither soundness nor unambiguity was broken. Since

(ỹ1, π̃1) passes verification and β̃1 = β1, it is guaranteed that the proofs (ỹ1, π̃1) (y1, π1)

are for the same statement. Therefore (ỹ1, π̃1) = (y1, π1) is the correct sub-state.

Assuming that the first k − 1 sub-states in v are correct, we will infer that the k-th

sub-state is also correct. The first step is to show that βk is correctly computed, for which

there are two possibilities. If βk corresponds to a challenge then, since y1, . . . , yk−1 have

been validated, βk is also guaranteed to be computed by hashing the same arguments as

in the protocol specification; otherwise, βk is computed by a simple increment, which the

verifier again checks for. Therefore, by the same argument as for k = 1, we get π̃k = πk
and ỹk = yk.

Consequently, all the labels in v are as prescribed by the successor circuit S, contra-

dicting the premise of the lemma that v 6= Si((0n, f(0n), ∅)). One therefore concludes that

there exists at least one index k∗ ∈ [1, `] such that either

• VFS((ỹk∗ , f, β̃k∗), π̃k∗) = 1, and
∑
z∈{0,1}n−jk∗ f(β̃k∗ , z) 6= ỹk∗ ; or

• VFS((ỹk∗ , f, β̃k∗), π̃k∗) = 1, and π̃k∗ 6= PFS(ỹk∗ , f, β̃k∗) where PFS is the prescribed

prover.

Here, the first case corresponds to the setting that there is an accepting proof for an

incorrect statement, while the second case corresponds to an accepting proof different

from that output by the prescribed prover.

Given an adversary A that finds such a vertex i with probability ε we can build an

adversary A′ that, depending on the case we are in, breaks soundness or unambiguity.

The strategy for A′ in either case is identical and is described below:

1. Run A on the RSVL instance (S,V, (0n, f(0n), ∅), L).

2. Let the output returned by A be of the form (t, {(ỹ1, π̃1), . . . , (ỹ`, π̃`)}).

3. Sample a random index k∗
$← [1, `].

4. Return
((
f, β̃k∗ , ỹk∗

)
, π̃k∗

)
, where β̃k∗ is the prefix associated to (ỹk∗ , π̃k∗).

A′ runs for a time that is roughly the same as that of A (i.e., TA). The analysis for A′’s

success probability is simple and we describe it only for the first case (as the other case is

identical). Informally, since there exists an index k∗ that breaks soundness, A′ succeeds

as long as it is able to guess this index correctly. Formally,

Pr [A′ succeeds] ≥ Pr [A succeeds] · Pr [k∗ is a correct guess|A′ succeeds]

≥ ε · 1

(d+ 1) · n
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The first inequality follows from the fact that if A succeeds, there is at least one index

k∗ such that VFS((ỹk∗ , f, β̃k∗), π̃k∗) = 1, and
∑
z∈{0,1}n−jk∗ f(β̃k∗ , z) 6= ỹk∗ . The second

inequality follows from the fact that a label contains at most M(n) ≤ (d+ 1) ·n tuples of

the form (y, π).

4.4 Instantiating Fiat-Shamir

There has been exciting recent progress [25; 61; 26; 24; 26; 28; 77] on instantiating the

Fiat-Shamir Transform using correlation-intractable hash functions (CIHFs) [27]. In this

section, we discuss the applicability of these results to our setting. We observe that

the results in [24] can be extended to our setting, yielding a hash family for which the

Fiat-Shamir Transform is sound when applied to the Sumcheck Protocol over polylog

variables, albeit under quasi-polynomial variants of the (strong) assumptions made in that

work.

Our starting point is the application of the Fiat-Shamir Transform in [24] to construct

publicly verifiable succinct arguments (pv-SNARGs). We note that while the assump-

tions required when the Fiat-Shamir Transform is used to construct Non-interactive Zero

Knowledge (NIZK) proofs are significantly more standard (e.g., plain LWE in [77]), these

results hold limited relevance to our setting. This is because the time required to evalu-

ate those hash functions is as large as the time needed to compute the (honest) prover’s

messages in the interactive proof protocol. In our context, this means that evaluating

the hash function would take super-polynomial time since the prover in the Sumcheck

Protocol runs in time exponential in the number of parameters.

The subsequent text is (to a large extent) adapted from [24], with several (important)

changes that are needed to obtain results in our setting. (The notation also has been

adapted.) We highlight changes in the assumptions and theorem statements. For a

comprehensive discussion, we refer the reader to [24].

4.4.1 Collision-Intractable Hash Functions

We begin with definitions, starting with the notion of correlation-intractability [27] that

we require for our application. A function is quasi-polynomial in a parameter λ if it

is of the form λpolylog(λ). We denote the set of all quasi-polynomial functions in λ by

quasipoly(λ).

Definition 21. For a relation ensemble R = {Rλ ⊆ Xλ × Yλ}λ∈N, a hash family H =

{Hλ : Iλ ×Xλ → Yλ}λ∈N is said to be R-correlation-intractable against quasi-polynomial

adversaries if for every quasi-polynomial-size A = {Aλ}λ∈N, there exists an ε such that

Pr [I ← Iλ, x← Aλ(I) : (x,Hλ(I, x)) ∈ Rλ] ≤ ε

For the context of our work, we will need ε to be a negligible function. We want to

guarantee such a property in the standard model. But even in the random oracle model,

this only makes sense for relations R that are sparse, which we formalize below.
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Definition 22 (Sparsity). For any relation ensemble R = {Rλ ⊆ Xλ × Yλ}, we say that

R is ρ-sparse if for all λ ∈ N and any x ∈ Xλ,

Pr
y←Yλ

[(x, y) ∈ Rλ] ≤ ρ(λ).

Remark 9. When we talk about correlation-intractability with respect to quasi-polynomial

time adversaries, it is not sufficient for ρ to be negligible. We will in fact require ρ to be

smaller than any inverse quasi-polynomial function.

We will need the ability to sample from the relation R. In fact, it is sufficient to be

able to approximately sample from the relation. We begin by defining what it means for

a distribution to be approximated.

Definition 23. A distribution P multiplicatively ε-approximates a distribution Q if for

all outcomes ω, it holds that

Pr [x← P : x = w] ≥ ε · Pr [x← Q : x = w] .

We proceed to formalize the notion of approximately sampling from a relation R.

Definition 24 (Approximate Sampleability of Relations). A relation ensemble R =

{Rλ ⊆ Xλ × Yλ}λ∈N is non-uniformly ε-approximately sampleable if there is a circuit en-

semble {Rλ}λ∈N such that for every x ∈ Xλ, the distribution Rλ(x) multiplicatively ε-

approximates the uniform distribution on the (by assumption, non-empty) set

{y′ ∈ Yλ : (x, y′) ∈ Rλ}.

We say that R is (non-uniformly) efficiently approximately sampleable if it is non-

uniformly ε-approximately sampleable for some ε ≥ 1/poly(λ).

For our application, we need relations where the sampling function R runs in quasi-

polynomial time.

4.4.1.1 CIHFs from Key-Dependent Message Security

Next we present the construction of CIHFs from secret-key encryption schemes that are

key-dependant message (KDM) secure due to Canetti et al. [26]. Intuitively, the hash-

ing key is a ciphertext and messages (to be hashed) are interpreted as decryption keys.

The hashing is then performed by decrypting the hash key/ciphertexts under the mes-

sage/decryption key.

Definition 25. Let SKE = {(Kλ,Eλ,Dλ)}λ∈N be a secret-key encryption scheme with

message space {0, 1}` for ` = `(λ). The CIHF associated to this encryption scheme,

denoted HSKE is

HSKE =
{
Hλ : Iλ ×Kλ → {0, 1}`

}
λ∈N

where Hλ(C, x) := Dλ(x,C)

where a key is sampled (from I) as the random ciphertext C := Eλ(K,M) obtained by

sampling K ← Kλ along with M ← {0, 1}`.
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Turning our attention to encryption schemes, we first define what it means for an

encryption scheme to have universal ciphertexts.

Definition 26. A secret-key encryption scheme SKE = {(Kλ,Eλ,Dλ)}λ∈N with mes-

sage space Mλ has universal ciphertexts if for any secret key K ∈ Kλ, the distribu-

tion Eλ(K,UMλ
) multiplicatively 1/poly(λ)-approximates the distribution Eλ(Kλ, UMλ

),

where UMλ
denotes the uniform distribution over Mλ.

Moving to security, we will define the security of certain primitives with respect to

quasi-polynomial adversaries, parameterised by a class of functions δ. For every quasi-

polynomial adversary, there exists a function δ ∈ δ such that the success probability of

the adversary is bounded by δ. In the context of our work, we will consider δ to contain

functions of the form quasipoly(κ)/2κ, where κ will denote the key length. We now

define key-dependent message (KDM) security for a homomorphic encryption scheme.

The security definition for the regular encryption scheme follows in a similar manner,

with the evaluation key being empty.

Definition 27 (KDM-security). Let FHE = {(Kλ,Eλ,Dλ,Fλ)}λ∈N be a secret-key fully-

homomorphic bit-encryption scheme with message spaceMλ, let f = {fλ : Kλ →Mλ}λ∈N
be a (potentially probabilistic) function. FHE is said to be δ-immune to key recovery by

an f -KDM query against quasi-polynomial adversaries if for each quasi-polynomial-sized

A = {Aλ}λ∈N, there exists a δ ∈ δ such that:

Pr


(K,E)← Kλ

(M1, . . . ,M`)← fλ(K)

{Ci ← Eλ(K,Mi)}i∈[`]

: Aλ(E,C1, . . . , C`) = K

 ≤ δ(λ)

Throughout this section we will abbreviate the above by saying that FHE is f -KDM δ-

secure against quasi-polynomial adversaries. If F is a set of functions then we say that

FHE is F -KDM δ-secure against quasi-polynomial adversaries if FHE is f -KDM δ-secure

against quasi-polynomial adversaries for all f ∈ F .

This is a modification of the f -KDM security used in [24]. Here, an adversary is

allowed to run in quasi-polynomial time. Looking ahead, F will be the collection of all

functions, with ` bits of output, that can be computed in quasi-polynomial time.

KDM-security and Regev Encryption. Our construction of CIHF and its security

hinge on the Regev encryption scheme [82], which we define below.

Definition 28 (Secret-Key Regev Encryption). For any positive integer q = q(λ) ≤
2poly(λ), n′ = n′(λ) ≤ poly(λ), and any poly(λ)-time sampleable distribution ensembles

χsk = {χsk(λ)}λ∈N and χe = {χe(λ)}λ∈N (4.6)

over Zq, we define Regevn′,q,χsk,χe
to be the secret-key encryption scheme {(Kλ,Eλ,Dλ)}

where:
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– Kλ is the distribution χn
′

sk.

– Eλ : Zn′q × {0, 1} → Zn′q × Zq is defined so that Eλ(s,m) is obtained by sampling a

uniformly random vector a← Zn′q , sampling e← χe(λ), and outputting(
a, st · a+m ·

⌈q
2

⌋
+ e
)
.

– Dλ : Zn′q ×
(
Zn′q × Zq

)
→ {0, 1} is defined so that Dλ(s, (a, b)) is the bit m for which

b− st · a is closer to m ·
⌈
q
2

⌋
than to (1−m) ·

⌈
q
2

⌋
.

A pair (a, b) ∈ Zn′q ×Zq is a Regev encryption of m ∈ {0, 1} under s ∈ Zn′q with B-bounded

noise if b− st · a−m ·
⌈
q
2

⌋
is in the interval [−B,B)

We now define a homomorphic encryption scheme that is sufficient for our application.

In some sense, these are FHE schemes that have implicit in them a (low-noise) secret-key

Regev ciphertext.

Definition 29 (Regev-Extractable Secret-Key Homomorphic Encryption). A secret-key

fully-homomorphic bit-encryption scheme {(Kλ,Eλ,Dλ,Fλ)}λ∈N is considered (n′, q, χsk)-

Regev-extractable with B(λ)-bounded noise if it satisfies the following structural proper-

ties.

1. The distribution of s when sampling (s, E)← Kλ is χn
′

sk with χsk as in eq.(4.6).

2. There is a poly(λ)-time evaluable extract function X = {Xλ}λ∈N such that

(a) For any λ, any s ∈ χn′sk, and any m ∈ {0, 1}, it holds that Xλ(Eλ(s,m)) is a

Regev encryption (a, b) of m under s with B-bounded noise, and where a is

uniformly random in Zn′q .

(b) For any m1, . . . ,mn′ ∈ {0, 1}, any circuit C : {0, 1}n
′
→ {0, 1}, and any

(s, E) ∈ Kλ, it holds with probability 1 that

Xλ(Fλ(E,C,Eλ(s,m1), . . . ,Eλ(s,mn′)))

is a Regev encryption (a, b) of C(m1, . . . ,mn′) under s with B-bounded noise.

For our applications, we require the Regev-extractable schemes to have the following

security property.

Definition 30 (CCO-security). Let FHE be an FHE scheme with key distributions

{Kλ}λ∈N. For (K,E) ∈ Kλ, let [[K]] denote the binary representation of K, and let

κ = κ(λ) denote the length of such a representation. For any ` = `(λ), FHE is said to be

quasi-polynomially (κ, `, δ)-CCO-secure if for every ensemble of `-bit messages {mλ}λ∈N,

FHE is f -KDM δ-secure against quasi-polynomial adversaries for the “augmented bit-by-

bit circular security function”

f =
{
fλ : Kλ → {0, 1}`+κ

}
where fλ(k) = mλ‖[[k]].
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4.4.2 Fiat-Shamir for the Sumcheck Protocol

Now that we have the relevant definitions, we show these help us achieve the desired result.

As indicated while defining the various primitives, we will need to work with adversaries

that have quasi-polynomial running time. A central component of this construction is

the following theorem from [24; 26] which reduces collision-intractability of the CIHFs to

KDM-security. We restate the theorem below, with some important differences for our set-

ting. We have defined our underlying primitives to require both correlation-intractability,

and KDM security, against adversaries running in quasi-polynomial time.

Theorem 8 ([26]). Let SKE = {(Kλ,Eλ,Dλ)}λ∈N be a secret-key encryption scheme with

universal ciphertexts, message space {0, 1}`, and key distribution Kλ equal to the uni-

form distribution on {0, 1}κ for some κ = κ(λ). If SKE is F-KDM δ-secure against

quasi-polynomial adversaries and R is a ρ-sparse relation that is λ−O(1)-approximately

F-sampleable, then for every quasi-polynomial time adversary, there is a δ ∈ δ such that

HSKE is R-correlation-intractable with

ε :=
δ(λ) · ρ(λ)

2−κ
· λO(1).

We omit the proof here, as it follows in an identical manner to the proof of the

corresponding theorem in [24]. To instantiate the above theorem, we will require CCO-

security against quasi-polynomial time adversaries for the FHE scheme, which is different

from the assumption stated in [24].

Assumption 4 (Existence of quasi-polynomially CCO-secure FHE). For some n′, q, χsk,

there exists a quasi-polynomially (κ, `, δ)-CCO secure secret key FHE scheme that is

(n′, q, χsk)-Regev-extractable with B-bounded noise for κ = λΘ(1), ` = λΩ(1), B ≤ q/Ω̃(λ)

and χn
′

sk that is sampleable in Õ(n′) time using κ+O(log λ) random bits.

The following claim states that if the assumption is true, then the Regev encryption

scheme has universal ciphertexts and satisfies KDM security. As stated earlier, another

difference in our assumption is that the class of function F ` contains all functions, with

output size `, computable in quasi-polynomial time.

Claim 8.1. If Assumption 4 is true, then there exist parameters n′ = n′(λ), q = q(λ),

and χsk = χsk(λ) such that for some ` = λΩ(1), Regevn′,q,χsk,χe
is F `-KDM δ-secure, where

F ` is the class of functions with `-bit output computable in quasipoly(λ) time, where χe

is the uniform error distribution on [−q/4, q/4), and where κ is the length of the binary

representation of an element of χn
′

sk.

Proof Sketch. Here we briefly sketch the main difference in the proof that necessitates the

different assumption from the underlying FHE scheme. For the proof details, we refer the

reader to the original proof in [24].

Let AKDM be the adversary that breaks the KDM security of the Regev encryption

scheme. We will use AKDM to build an adversary ACCO that breaks Assumption 4. ACCO
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is given as input the challenge (E, c1, . . . , c`+κ), where c`+1, . . . , c`+κ is the encryption of

the secret key K.

On initialization, AKDM queries the challenger with a function f ∗ ∈ F ` of its choice,

and expects an encryption of f ∗(K). In order to facilitate this, ACCO uses the homomor-

phic evaluation function F to homomorphically compute f ∗(K) as F(E, f ∗, c`+1, . . . , c`+κ).

But given that F ` consists of all functions computable in quasi-polynomial time, the

above F computation may take quasi-polynomial time. The rest of the reduction remains

unchanged.

Therefore, the reduction requires ACCO to perform a quasi-polynomial computation,

which in turn necessitates that Assumption 4 be secure against quasi-polynomial adver-

saries.

We can now state the main theorem: under circular-security assumptions against

quasi-polynomial time adversaries for the FHE scheme, the Fiat-Shamir Transform when

applied to the Sumcheck Protocol is an adaptively-sound argument.

Theorem 9. If Assumption 4 is true, then the non-interactive Sumcheck Protocol in

Figure 4.3, instantiated with the hash family HSKE, is adaptively unambiguously sound for

the language LSC (see §4.1.2), with formulas on n = polylog(λ) variables.

Remark 10. We note that the size of the field F, defined to be 2ω(n), is larger than

any quasi-polynomial in the parameter λ. This follows from the fact that for correlation-

intractability to make sense against quasi-polynomial adversaries, we require the relation

to be sufficiently sparse. Setting the field-size to be quasi-polynomial is not sufficient since

a quasi-polynomial time adversary can break correlation-intractability even when the hash

function is modeled as a random oracle by trying quasi-polynomially many different values

of x.

Proof. We proceed in two stages, initially establishing that a CIHF for the relevant relation

implies that the Fiat-Shamir Transform is adaptively-sound. Next, we show that under

suitable choices of parameters for the underlying primitives, we can instantiate such a

CIHF.

Stage I: From correlation-intractability to soundness. The use of CIHFs to in-

stantiate the Fiat-Shamir Transform was suggested in [27]. The first stage of our reduction

can be seen as a straightforward adaptation of their argument (as provided in [24]) to our

setting. For the first part, we restate the following claim from [24], removing the efficiency

requirements needed for their result, and adapting it to the specific case of the Sumcheck

Protocol.

The following relation specifies whether partial transcript in Sumcheck Protocol is

bad or good. For any i ∈ {j + 1, . . . , n}, an i-th round partial transcript consists of the

statement (F, y, f,β), and τi := αj+1, βj+1, . . . ,αi, βi. Recall that αi = {αi,γ}dγ=0 defines

a unique degree d polynomial gi. Formally the relation RSC is defined as,

RSC := {((F, y, f,β, τi,α), β) : (F, y, f,β, τi) ∈ B ∧ (F, y, f,β, τi,α, β) ∈ G}
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for some i-th round partial transcript. We say that a partial transcript (F, y, f,β, τi) ∈ B
(bad) if

(F, gi(βi), f,β, βj+1, . . . , βi) 6∈ LSC

where βj+1, . . . , βi and gi are obtained from τi. Roughly, a partial transcript is bad if it

leads the verifier in the interactive protocol to reject with high probability. Correspond-

ingly, we say that a partial transcript (F, y, f,β, τi) ∈ G (good) if

(F, gi(βi), f,β, βj+1, . . . , βi) ∈ LSC,

again roughly translating to a partial transcript that leads the verifier to in the interactive

protocol to accept. We now state the claim.

Claim 9.1. Let Π = (PSC,VSC) be the O(polylog(λ))-round public-coin interactive pro-

tocol for the language LSC with perfect completeness and adaptive soundness. If a hash

family H is RSC correlation-intractable, and evaluable in time poly(λ), then Fiat-Shamir

Transform gives an adaptively-sound argument for LSC.

Proof. This follows in a straightforward manner as in the proof in [24], and is included here

for completeness. The completeness of the protocol follows from the completeness of the

underlying protocol (P,V). For the adaptive soundness, we prove this via contradiction.

Suppose there exists a cheating prover P∗ that on input (1λ, H), where H is sampled from

Hλ, that produces a string (F, y∗, f ∗, β∗1 , . . . , β∗j ) /∈ LSC. i.e∑
z∈{0,1}n−j

f ∗(β∗1 , . . . , β
∗
j , z) 6= y∗

and (α∗j+1, . . . ,α
∗
n) such that V accepts the transcript derived using H. We shall use this

cheating prover P∗ to create an adversary A = {Aλ}λ∈N that breaks the RSC-correlation-

intractability of H. On receiving H ∈ Hλ, Aλ does the following:

1. Run P∗ on input (1λ, H) to obtain (F, y∗, f ∗, β∗1 , . . . , β∗j ) and (α∗j+1, . . . ,α
∗
n).

2. Sample a random index i∗ ← {j + 1, . . . , n− 1}.

3. Return
(
F, y∗, f ∗, β∗1 , . . . , β∗j , τi∗ ,α∗i∗+1

)
, where ∀k ∈ [i]:

βk = h(F, y∗, f ∗, β∗1 , . . . , β∗j , τk−1,α
∗
k).

From Sumcheck Protocol, for every accepting transcript for (F, y∗, f ∗, β∗1 , . . . , β∗j ) /∈ LSC,

there must exist at least one round k such that:

(F, y∗, f ∗, β∗1 , . . . , β∗j , τk) ∈ B and
(
F, y∗, f ∗, β∗1 , . . . , β∗j , τk,α∗k+1, βk+1

)
∈ G.

Note that this follows from the fact that (F, f ∗, y∗, β∗1 , . . . , β∗j ) /∈ LSC, and for V to accept,

the complete transcript must be G. Thus with probability ε/(n − j − 1), Aλ selects the

appropriate index k, and outputs the correct partial transcript. This contradicts our

assumption of correlation-intractability.
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Stage II: Building the appropriate CIHF. It remains to show that we can build a

CIHF for the relation RSC. Now, we need to establish certain properties from the relation

RSC in order to invoke Theorem 8. We start with two simple claims regarding the relation

RSC. For simplicity of exposition, let us denote by gi+1 the prescribed polynomial (given

prefix β) to be sent in round i+ 1, i.e.

gi+1(x) :=
∑

z∈{0,1}n−i−1

f(β, βj+1, . . . , βi, x,z).

Claim 9.2. RSC is a ρ-sparse relation for ρ = d/|F|.

Proof. Given (F, y, f,β, τi,α), we compute the fraction of β such that

((F, y, f,β, τi,α), β) ∈ RSC.

For (F, y, f,β, τi,α, β) ∈ G, we require β to be such that g̃(β) = gi+1(β), where g̃(x)

denotes the polynomial described by α, and gi+1(x) is as defined above. This follows

from the definition of LSC. The polynomial gi+1(x) − g̃(x) has degree at most d (since

g(x) has degree at most d), and is non-zero (since g̃ is not the prescribed polynomial).

Thus, from Schwartz-Zippel lemma, there are at most d roots to the above polynomial,

and thus d values β such that g̃(β) = gi+1(β). Thus the fractions of such values are d/|F|.
Since, we have set |F| to be of size ω(quasipoly(λ)), ρ is negligible.

Claim 9.3. RSC is sampleable in quasipoly(λ)-time.

Proof. The algorithm for sampling a β given ((F, y, f,β, τi,α) works in the following

manner. Using the Cantor-Zassenhaus algorithm [29], we can enumerate all roots with

probability 2/3, and therefore with any probability arbitrarily exponentially close to 1.

If the factorization succeeds, we can sample an element from this set of all roots with

arbitrarily small sampling error. As described above, it is sufficient to output a random

root of gi+1(x) − g̃(x). The running time of the above sampling strategy derives from

the fact that to compute the polynomial gi+1, we need to compute an exponential sum

over polylog(λ) variables. We note that from Remark 10, the size of field is larger than

any quasi-polynomial, and thus we do not know if we can do this determinisitcally in

quasi-polynomial time.

Theorem 8 requires RSC to be sampled by a function in F . Thus, in our setting, F
represents the set of all functions computable in quasipoly(λ) time. We additionally

make the following simple observations regarding the Sumcheck Protocol:

– The total number of rounds ` in the protocol is polylog(λ). This follows from the

structure of the protocol wherein each round corresponds to reducing the claim by

a single variable, and we have set the number of variables to be polylog(λ)

– The length of each verifier message is |βi| = ω(polylog(λ)) by our choice of param-

eters. This follows from the fact that each βi ∈ F.
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– The size of the input to the hash function, (F, y, f,β, τ`), is poly(λ). This follows

from the fact that in addition to the description of the function f (of size poly(λ)),

the input consists of ` rounds of prover, and verifier, messages. A prover mes-

sage consists of only O(d) elements from F. Given that the number of rounds are

polylog(λ), this gives an additive overhead of ω(polylog(λ)) to the description of

f .

Finally,to instantiate Theorem 8, we need an appropriate encryption scheme with

universal ciphertexts, and KDM security for all quasi-polynomial computable functions.

Specifically, we require an encryption scheme SKE = (SKE.G, SKE.E, SKE.D) with keys of

length κ = κ(λ) ≥ λΩ(1) and universal ciphertexts that are δ-KDM secure for arbitrary

quasi-polynomial computable functions, of output length `.

Assumption 4 implies that secret key Regev encryption satisfies these properties, with

secret distribution χsk that is uniform on [−B,B) for some B, and error distribution

χerr that is uniform on
[
− q

4
, q

4

)
. For the corresponding scheme n′ is set to be such that

(2B + 1)n
′ ∈ {0, 1}|τ |, where |τ | is the size of the largest input to the hash function, and

` = ω(polylog(λ)) is the size of a single verifier message.

We now have all the requisite conditions for Theorem 8, and thus invoking the re-

sult, the Fiat-Shamir Transform gives us an adaptively-sound argument system. From

Claim 4.1, an adaptively-sound argument system is also an adaptively unambigiously-

sound argument system, thus completing the proof.
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5 Conclusions and Future Directions

We have seen how the average-case hardness of lower classes of TFNP can be estab-

lished using assumptions that are of a different flavour from circuit obfuscation. More-

over, it seems plausible that hardness in PPAD and CLS could be established from

standard cryptographic assumptions like Factoring or well-studied primitives such as

fully-homomorphic encryption: we saw some evidence for this in the final Chapter. Our

results and techniques motivate several natural research directions.

Hardness relative to random oracles. In [31], the paper that corresponds to Chap-

ter 4, we had claimed that the second construction yields hardness in CLS ⊆ PPAD

relative to a random oracle: i.e., PH 6= CLSH for a random oracle H. However, as

we saw in Remark 8 this claim is wrong. Using further ideas from incrementally-

verifiable computing, a recent result [11] has shown that such a statement is indeed

true for the class PLS: PH 6= PLSH for a random oracle H. However, for classes

PPAD and CLS this still remains an interesting open problem.

Replacing random oracles. A natural question that is worth following up is whether

the Fiat-Shamir Transform for the second construction can be instantiated under

assumptions weaker than Assumption 4. This will require a finer understanding of

the notion of collision-intractability for Sumcheck Protocol.

It is well worth pointing out that this question is equally interesting (and arguably

easier to address) in the setting of our first construction, where the random or-

acle is used to obtain a non-interactive version of Pietrzak’s proof for certifying

that y = f(N, x, T ) = x2T mod N . Given that 1) the algebraic statement that

is being proved has a very specific structure and 2) Pietrzak’s proof system has

statistical soundness, it might be possible to instantiate Fiat-Shamir using stan-

dard assumption or alternatively design a non-interactive proof system for certifying

y = f(N, x, T ) directly, i.e., without relying on Fiat-Shamir.

One such approach would be to adapt the recent results from [60] to our settings, in

particular to the second construction. In [60] a delegation scheme is constructed

for arbitrary computations under a new, but falsifiable, assumption on bilinear

maps. They start off with a long CRS (common reference string) and then use

bootstrapping techniques from [91; 10] to obtain delegations schemes with short

CRS. Since we don’t have to deal with general computation, it might turn out that

their construction can be adapted to suit our needs under weaker assumptions.
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Reducing from Factoring. Factoring is often regarded as one of the “rogue” prob-

lems in TFNP [48] as it has withstood attempts to be placed in one of the sub-

classes (with respect to Karp reductions). In the thesis we worked primarily with

Iterated-Squaring which, as we saw, is Karp-reducible to Factoring. Thus,

hardness of Factoring is necessary for our hardness assumption on Iterated-

Squaring (Assumption 2) to hold. However, similar to the RSW assumption or

the RSA assumption, it is not clear if hardness of Factoring is sufficient. There-

fore, orthogonal to the question raised above (about removing random oracles), it

is natural to ask if our techniques can be improved to reduce from Factoring in

the random-oracle model. For instance, is it possible to implement one of the many

factorisation algorithms in an incrementally verifiable manner? We describe below

some of our attempts and explain why they failed.

1. Exploiting the SVL oracle. Our reduction basically shows that the access to

an RSVL oracle enables one to compute exponential powers modulo a com-

posite efficiently (and incrementally-verifiably). One could ask whether this

oracle can be exploited to factor integers. Unfortunately, this problem seems

closely related to a long-unresolved problem from [13] in the context of pseudo-

random generators (PRG). The PRG in [13] works in the same modulus N as

in Iterated-Squaring. Starting from a random seed x ∈ Z∗N , it generates

random stream of bits by squaring the current state and extracting its least

significant bit (LSB): i.e.

LSB(x2)→ LSB(x22)→ LSB(x23) · · · → LSB(x2T ) (modN). (5.1)

One of the open questions posed there (in §9) is whether random access to this

stream allows factoring N .

2. Computing square-root. The structure of the squaring function on the modulus

in Iterated-Squaring (IS) is fairly well-understood [13]. It is known that

for elements x ∈ QRN it has a cyclic structure{
x, x2, x22 , x23 , . . . , x2π(x) = x mod N

}
, (5.2)

with the length of the cycle π(x) depending on the factors of N . Moreover,

the penultimate entry in this sequence x2π(x)−1
is the square-root of x modulo

N , and computing it is equivalent to factoring N [81]. Therefore, in order to

reduce from Factoring, one could define an SVL instance which computes

the sequence in eq.(5.2) incrementally-verifiably as we did for IS.

However, there is one issue: it is not clear how to set the length parameter L

beforehand (since it is hard to compute without the factors). To this end, let’s

define a slight variant of the SVL problem, without the length parameter, and

with the sink vertex that is obtained by simply following the successor function

till it self-loops set as the solution. The successor function in the instance

can now be defined just like in our first construction but with one difference:
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since there is no length parameter, it continues to incrementally and verifiably

compute IS until the penultimate entry in the sequence i.e., x2π(x)−1
, (which

can be tested efficiently by squaring the current value) at which point it self-

loops. In order to now mimic the reduction from SVL to EOL (Lemma 2)

for the above variant of SVL, we need to maintain a counter that tracks the

distance from the source in the label. The successor would have to increment

this counter at every step.

Although the approach seems to work at first, a closer inspection reveals an

inherent problem. This problem arises from the introduction of the counter in

the label, and has to do with the fact that

x2i = x2i+π(x) mod N.

A successor function that is input the label with a counter i + π(x) has no

way of knowing that this point is beyond the sequence and therefore simply

applies the normal succession rule. As a result, it will soon run out of labels

and therefore will be forced self-loop at the lexicographically-last label, making

it an easy-to-find sink (called “Pavel” sinks in some circles).

We remark that we run into similar issues if we try to incrementally-verifiably

implement the factoring algorithms that rely on cycle-finding (e.g., Pollard’s

[80] or Brent’s [21] algorithm). The bottom-line is that we will have to tackle

cycles of unknown length if we are to make any progress towards reducing from

Factoring.

Reducing from Factoring-like assumptions. It would also be of interest if assump-

tions related to Factoring, such as RSA and composite residuosity (CR) assump-

tion [74], can be reduced to EOL (even in the random-oracle model). Since these

problems both reduce to Factoring (see Figure 5.1), they have a richer structure

that could be exploited. It is also worth pointing out that RSA is widely believed

not to be equivalent to Factoring [16].

Factoring

RSA

CR IS

?

?

Figure 5.1: Factoring and its related assumptions. A → B denotes that problem A

reduces to problem B. The arrows with a question mark denote unknown relationships.

Incrementally-verifiable computation of Lucas sequences. The crucial observation

we make in this thesis is that the possibility to merge proofs somewhat-efficiently is
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sufficient for performing certain computations in an incrementally-verifiable manner.

We expect this technique to find applications in different contexts.

One such possibility could be to the computation of Lucas sequences [64], which are

certain constant-recursive recurrence relations of the form

xn = P · xn−1 +Q · xn−2,

where P,Q ∈ N are two parameters. An alternative method to compute n-th term

in this sequence is using iterated squaring in an extension field using the closed form

xn = α2n + β2n , where α, β are elements of the extension field that can be derived

from P and Q. Thus its computation is similar to that of Iterated-Squaring,

and similar techniques potentially apply.

One of the applications of Lucas sequences is in Lucas-Lehmer test, which is used

to test the primarily of Mersenne primes, i.e. are primes of the form Mp = 2p − 1.

Given a prime p, to test whether Mp is also a prime we first compute the sequence

s0 = 4, s1, . . . , sp−2 mod Mp, where si+1 = s2
i mod Mp. By a theorem of Lucas and

Lehmer it follows that Mp is a prime iff sp−2 = 0 mod Mp. We would like to point

out that the largest known prime known was discovered using this method and has p

of size around 80 million digits. Therefore, these computations are extremely time-

consuming (taking order of months) and the only way that another party can verify

is by repeating the computation. By using incrementally-verifiable procedure, one

could generate a certificate of primarily along with the computation, which would

enable other parties to validate such primes more efficiently.

Round-complexity of interactive protocol. A question related to the one preceding

is regarding the round complexity of interesting protocols (with statistical sound-

ness). Note that Sumcheck Protocol requires polynomially-many rounds of interac-

tion between the prover and the verifier. Pietrzak’s protocol, on the other hand,

enables statistical testing of y = f(N, x, T ) = x2T mod N in logarithmic number of

rounds. Are there other problems that allow for such testing? Interestingly, even the

best known interactive protocol for UNSAT ∈ co-NP (which is also the Sumcheck

Protocol) requires polynomially-many rounds.
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A Missing Proofs

A.1 Proof of Lemma 5

Lemma 5 (Bad queries are hard to find). For any N = p ·q where p = 2p′+1, q = 2q′+1

are λ/2-bit safe primes, the following holds: any adversary that makes at most Q queries

to the random oracle H will make a bad query with probability at most 3 ·Q/2λ/2−1

Proof (of Lemma 5). Recall that a query is a tuple (µ, x, y, T ) where µ, x, y ∈ QR+
N and

T ∈ N, and the query (µ, x, y, T ) is bad if x ∈ QR?
N and moreover either

(i) x′ 6∈ QR?
N ; or

(ii)
(
x2T 6= y or µ 6= x2T/2

)
and x′2

T/2

= y′,

where r := H(µ, x, y, T ), x′ := xr ◦ µ and y′ := µr ◦ y.

In the rest of the proof and in Claims 9.4 and 9.4, to avoid cluttering, we drop the

subscript in λ and denote it by λ. Since the range of the range of the random oracle H

is {0, 1}3λ (cf. §3.2.2), its output is distributed 2−λ-close to uniform over Zp′q′ . In the

analysis below we assume that it is actually uniform over Zp′q′ and then apply the data

processing lemma [34] to get the desired bound. That is, we show that

Pr
r

[(y′ = x′
2T/2

) ∨ (x′ /∈ QR?
N)] ≤ 3/2λ.

where r is chosen uniformly at random from Zp′q′ . Using Pr[a∨ b] = Pr[a∧ b] + Pr[b], this

can be rewritten as

Pr
r

[(y′ = x′
2T/2

) ∧ (x′ ∈ QR?
N)] + Pr

r
[x′ /∈ QR?

N ] ≤ 3/2λ. (A.1)

We bound the two probabilities separately in Claims 9.4 and 9.5, and the lemma follows

by a union bound over all the queries.

Claim 9.4. Prr[x
′ /∈ QR?

N ] ≤ 2/2λ.

Proof. By eµ we denote the unique value in Zp′q′ satisfying xeµ = µ (it’s unique as µ ∈
〈x〉 = QR+

N and
∣∣QR+

N

∣∣ = p′q′). As x, µ ∈ QR+
N , also x′ = xr ◦ µ = xr+eµ is in QR+

N ,
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and 〈x′〉 = QR+
N holds if ord(x′) = p′q′, which is the case except if (r+ eµ) = 0 mod p′ or

(r + eµ) = 0 mod q′ or equivalently (using that 2λ < min(p′, q′)) if

r ∈ B := {Z2λ ∩ {(−eµ mod p′), (−eµ mod q′)}} . (A.2)

Clearly |B| ≤ 2 and the claim follows.

Claim 9.5. Prr[(y
′ = x′2

T/2

) ∧ (x′ ∈ QR?
N)] ≤ 1/2λ .

Proof. If y 6∈ QR+
N , then also y′ = µr ◦ y 6∈ QR+

N (as a ∈ QR+
N , b 6∈ QR+

N implies

a ◦ b 6∈ QR+
N). As x′ ∈ QR?

N and y′ 6= x′2
T/2

cannot hold simultaneously in this case the

probability in the claim is 0. From now on we consider the case y ∈ QR+
N . We have

Pr
r

[y′ = x′
2T/2 ∧ x′ ∈ QR?

N ] = Pr
r

[y′ = x′
2T/2 | x′ ∈ QR?

N ] · Pr
r

[x′ ∈ QR?
N ] (A.3)

For the second factor in eq.(A.3) we have with B as in eq.(A.2)

Pr
r

[x′ ∈ QR?
N ] =

2λ − |B|
2λ

. (A.4)

Conditioned on x′ ∈ QR?
N the r is uniform in Z2λ \ B, so the first factor in eq.(A.3) is

Pr
r

[y′ = x′
2T/2 | x′ ∈ QR?

N ] = Pr
r∈Z

2λ
\B

[y′ = x′
2T/2

] . (A.5)

Let ey ∈ Zp′q′ be the unique value such that xey = y. Using 〈x〉 = QR+
N in the last step

below we can rewrite

y′ = x′
2T/2 ⇐⇒

µry = (xrµ)2T/2 ⇐⇒
xr·eµ+ey = x(r+eµ)◦2T/2 ⇐⇒

r · eµ + ey = (r + eµ) · 2T/2 mod p′q′

rearranging terms

r(eµ − 2T/2) + ey − eµ2T/2 = 0 mod p′q′ . (A.6)

If eµ = 2T/2 this becomes

ey − 2T = 0 mod p′q′

which does not hold as by assumption we have y 6= x2T . So from now on we assume

eµ 6= 2T/2 mod p′q′. Then for a = eµ − 2T/2 6= 0 mod p′q′ (and b = ey − eµ2T/2) eq.(A.6)

becomes

r · a = b mod p′q′

which holds for at most one choice of r from its domain Z2λ \ B, thus

Pr
r∈Z

2λ
\B

[y′ = x′
2T/2

] ≤ 1

2λ − |B|
and the claim follows from the above equation and eq.(A.3)-eq.(A.5) as

Pr
r

[(y′ = x′
2T/2

) ∧ (x′ ∈ QR?
N)] = Pr

r∈Z
2λ
\B

[y′ = x′
2T/2

] · Pr
r

[x′ ∈ QR?
N ]

≤ 1

2λ − |B|
· 2λ − |B|

2λ
≤ 1

2λ
.
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