
Constructing Provably Secure Identity-Based Signature
Schemes.

A Thesis

Submitted for the Degree of

Master of Science (Engineering)
in the Faculty of Engineering

by

Chethan Kamath H

Computer Science and Automation
INDIAN INSTITUTE OF SCIENCE
BANGALORE – 560 012, INDIA

JULY 2015

To my Teachers.

i

Sir Bedevere: There are ways of telling whether she is a witch.

Peasant 1 : Are there? Oh well, tell us.

Sir Bedevere: Tell me. What do you do with witches?

Peasant 1 : Burn them.

Sir Bedevere: And what do you burn, apart from witches?

Peasant 1 : More witches.

Peasant 2 : Wood.

Sir Bedevere: Good. Now, why do witches burn?

Peasant 3 : ...because they’re made of... wood?

Sir Bedevere: Good. So how do you tell whether she is made of wood?

Peasant 1 : Build a bridge out of her.

Sir Bedevere: But can you not also build bridges out of stone?

Peasant 1 : Oh yeah.

Sir Bedevere: Does wood sink in water?

Peasant 1 : No, no, it floats!... It floats! Throw her into the pond!

Sir Bedevere: No, no. What else floats in water?

Peasant 1 : Bread.

Peasant 2 : Apples.

Peasant 3 : Very small rocks.

Peasant 1 : Cider.

Peasant 2 : Gravy.

Peasant 3 : Cherries.

Peasant 1 : Mud.

Peasant 2 : Churches.

Peasant 3 : Lead! Lead!

King Arthur : A Duck.

Sir Bedevere: ...Exactly. So, logically...

Peasant 1 : If she weighed the same as a duck... she’s made of wood.

Sir Bedevere: And therefore...

Peasant 2 : ...A witch!

–Monty Python and the Holy Grail

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my primary advisor, Dr. Sanjit

Chatterjee. I owe him not only for helping develop my academic nous, but also for enlightening me

on the subtleties of life, in general. Working under his guidance has been an absolute joy! I am

also grateful to Prof. C. E. Veni Madhavan, my co-advisor, for his constant support. I am indebted

to faculty of mathematics (in particular, Prof. Dilip Patil and Dr. Chandan Saha) who made me

appreciate the elegance, the beauty of mathematics once again. Finally, I would like to thank Prof.

C. Pandu Rangan for the kind reviews.

I am thankful to my labmates: Vikas, Nitish, Srikanth, Kumar, Srinivas Vivek, Sudarshan,

Kabaleesh, the two Siddharthas, Sayantan, Indradeep, Manjunath, Yogesh, Aniket and Nithin, for

their support and forbearance; in particular, I am indebted to Vikas–we were partners in the buddy

system of academia. I would also like to thank Ashwin, Maria, Ninad, Subramanya (CSA, IISc),

Somindu, Sanjay and Rishiraj (ISI, Kolkata) for some insightful discussions. I am also grateful to

my batchmates and our football club for some pleasant, lasting memories.

Last but not the least, I would like to thank my family to whom I owe everything.

ii

Notation and Abbreviations

We adopt the notations that is commonly used in the literature (see [AB09]). Sets are denoted

by blackboard bold letters in upper case (e.g ., S,Z), algorithms using calligraphic letters in upper

case (e.g ., A, B) and tables, schemes etc. using upper case letters in fraktur (e.g ., C). Events are

denoted using typewriter font (e.g ., E, abort1,1). We use Z+ to indicate the set of positive integers.

For an event E, the complementary event is denoted by ¬E. In a group, the discrete-log to a

generator g is denoted by log g.

s
U←− S denotes picking an element s uniformly at random from the set S. In general, {s1, . . . , sn}

U←−

S denotes picking elements s1, . . . , sn independently and uniformly at random from the set S. In a

similar manner, s
$←− S and {s1, . . . , sn}

$←− S denote random sampling, but with some underlying

probability distribution on S.

(y1, . . . , yn)
$←− A(x1, . . . , xm) denotes a probabilistic algorithm A which takes as input (x1, . . . , xm)

to produce output (y1, . . . , yn). The internal coins ρ of an algorithm, when explicitly given as in-

put, is distinguished from the normal input using a semi-colon, e.g ., y ← A(x; ρ). Oracle access is

indicated using superscripts, e.g ., access to an oracle H taking one parameter as inputs is denoted

by y
$←− AH(·)(x). The number of dots indicate the number of parameters, e.g ., H(·, ·) is an oracle

taking two parameters as input. Throughout the thesis, we denote the adversary by A.

In reductionist security arguments, Π ≤γ M[P] denotes that Π is γ-reducible to P: given an

adversary against P in the security model M, one can construct an algorithm that breaks Π with

a degradation of γ. Π
γ⇐= M[P] conveys the same message. A straightforward generalisation is

M′[P′] ≤γ M[P]: given an adversary against P in the security model M, one can construct an

algorithm that breaks P′ in the security model M′ with a degradation of γ. (Note that we use long

arrows to denote logical implication and short arrows to denote reductions.)

Next, we introduce some notations pertaining to random oracles. The symbol < is used to order

the random oracle calls; e.g ., H(x) < G(y) indicates that the random oracle call H(x) precedes the

iii

Notation and Abbreviations iv

random oracle call G(y). More generally, H < G indicates that the target H-oracle call precedes

the target G-oracle call. The convention applies to hash functions as well. The symbol, on the

other hand, ≺ is used to indicate random oracle dependency; e.g . H ≺ G indicates that the random

oracle G is dependent on the random oracle H. In the discussion involving the forking algorithms,

Qkj denotes the jth random oracle query in round k of simulation.

Finally, in schematics involving IBC, dashed lines indicate an open channel, whereas solid lines

indicate a secure channel.

Publications based on this Thesis

1. Sanjit Chatterjee and Chethan Kamath. A closer look at multiple forking: Leveraging

(in)dependence for a tighter bound. In Algorithmica, pages 1–42, 2015.

2. Sanjit Chatterjee, Chethan Kamath and Vikas Kumar. Galindo-Garcia Identity-Based Sig-

nature Revisited. In Information Security and Cryptology–ICISC’12, volume 7839 of Lecture

Notes in Computer Science, pages 456-471, Springer, 2013.

3. Sanjit Chatterjee and Chethan Kamath. From Selective-ID to Full-ID IBS without Random

Oracles. To appear in Security, Privacy and Cryptography–SPACE’13, volume 8204 of Lecture

Notes in Computer Science, pages 172-190, Springer, 2013.

v

Abstract

An identity-based cryptosystem is a public-key system where the public key can be represented

by any arbitrary string such as an e-mail address. This notion was introduced by Shamir with

the primary goal of simplifying certificate management. In this thesis we study identity-based

signatures (IBS)–the identity-based counterpart of digital signatures. In particular, we focus on

two techniques–one concrete and the other, generic–used to construct IBS. The concrete scheme

we look into is the one proposed by Galindo and Garcia in Africacrypt 2009. This constitutes the

primary contribution of the thesis. The generic technique, on the other hand, involves constructing

fully-secure IBS given an IBS secure in the selective-identity model.

The Galindo-Garcia IBS (GG-IBS) is derived through a simple and elegant concatenation of two

Schnorr signatures. It works in the discrete-log setting but does not require pairing. The security

is established through two algorithms (both of) which use the Multiple-Forking (MF) Algorithm to

reduce the problem of computing the discrete-log to breaking the IBS. The primary contribution

of the thesis pertains to the security argument: it turns out that the argument is ridden with

flaws and ambiguities and, as a remedy, we provide a new, detailed, security argument. However,

the resulting security bound is still quite loose, chiefly down to the usage of the MF Algorithm.

We explore possible avenues for improving this bound and, to this end, introduce two notions

pertaining to random oracles termed dependency and independency. Incorporating (in)dependency

allows us to launch the nested replay attack more effectively than in the MF Algorithm leading to

a cleaner, (significantly) tighter security argument for GG-IBS, completing the final piece of the

GG-IBS jigsaw.

In the second part of the thesis we look into the notion of selective-identity (sID) in the context

of IBS. Since its induction, the sID model for identity-based cryptosystems and its relationship

with various other notions of security has been extensively studied. As a result, it is a general

consensus that the sID model is much weaker than the full-identity (ID) model. The main focus

vi

Abstract vii

is on the problem of constructing an ID-secure IBS given an sID-secure IBS without using random

oracles–the so-called standard model–and with reasonable security degradation. We accomplish

this by devising a generic construction which uses as black-box: i) a chameleon hash function and

ii) a weakly-secure public-key signature. We argue that the resulting IBS is ID-secure but with a

tightness gap of O(qs), where qs is the upper bound on the number of signature queries that the

adversary is allowed to make.

Contents

Acknowledgements ii

Notation and Abbreviations iii

Publications based on this Thesis v

Abstract vi

Keywords x

1 Introduction 1
1.1 Identity-Based Signatures . 2
1.2 Provable Security . 3

1.2.1 Reductionist Security Arguments . 5
1.2.2 The Random-Oracle Methodology . 6

1.3 Preliminaries . 7
1.3.1 Public-Key Signatures . 7
1.3.2 Identity-Based Signatures . 9
1.3.3 Discrete-Logarithm Assumption . 13

1.4 Organisation of the Thesis . 14

2 Schnorr Signature and the Oracle Replay Attack 16
2.1 Introduction . 16
2.2 Schnorr Signature . 16

2.2.1 Construction . 17
2.2.2 Security of Schnorr Signature: An Intuition 17
2.2.3 Basic Security . 18

2.3 The Oracle Replay Attack . 21
2.3.1 The Splitting Lemma . 21
2.3.2 Launching the Oracle Replay Attack . 24

2.4 General Forking . 32
2.5 Nested Oracle Replay Attacks and Multiple Forking 35

2.5.1 Analysis . 35
2.5.2 Multiple Forking . 41

3 Galindo-Garcia IBS, Revisited 44
3.1 Introduction . 44
3.2 Revisiting the Galindo-Garcia Security Argument . 45

viii

CONTENTS ix

3.2.1 The Construction . 45
3.2.2 The Security Argument and Problems with it 47

3.3 New Security Argument . 54
3.3.1 Reduction R1 . 56
3.3.2 Reduction R2 . 63
3.3.3 Reduction R3 . 66
3.3.4 A Comparison with the Original Reduction. 68

4 Galindo-Garcia IBS, Improved 69
4.1 Introduction . 69
4.2 Degradation: A Closer Look . 70
4.3 Galindo-Garcia IBS, Improved . 75

4.3.1 Security Argument . 76
4.3.2 Analysis . 76
4.3.3 Taking Stock . 83

5 From sID IBS to ID IBS without Random Oracles 84
5.1 Introduction . 84
5.2 Chameleon Hash Function . 85
5.3 The Generic Transformation . 86

5.3.1 Security Argument . 87
5.4 Transforming from the EU-wID-CMA model . 95

6 Conclusions 99

Appendices 109

A Galindo-Garcia IBS 109
A.1 The Fixed Security Argument . 109

A.1.1 Reduction B1 . 109
A.1.2 Reduction B2 . 110

A.2 A Security Argument without Wrappers . 111
A.2.1 Reduction R1 . 112
A.2.2 Reduction R2 . 120
A.2.3 Reduction R3 . 124

A.3 Reduction R′1 . 126
A.3.1 Analysis . 129

Keywords

Provable Security, Random Oracles, Schnorr Signature, Oracle Replay Attack,

Forking, Identity-Based Signature, Galindo-Garcia IBS, Multiple-Forking, Random-

Oracle Dependency, Selective-Identity Model

x

Chapter 1

Introduction

The concept of identity-based cryptosystems (IBC) was introduced by Shamir in 1984 [Sha85].

In IBC, any arbitrary string such as an e-mail address can act as the public key. In traditional

public-key cryptosystems (PKC), users have to exchange public-key certificates before being able

to communicate securely. These certificates provide the external binding between the public key

and the identity of a user. In some scenarios certificates can prove to be cumbersome. Using IBC

one can avoid the complicated certificate management–this, precisely, was Shamir’s foresight.

Identity-based signatures (IBS) extend the notion of digital signatures to the identity-based

setting. As in traditional signature schemes, the signer uses her secret key to sign a message.

However, the signature can be verified by anyone using the signer’s identity and the “master” public

key of the private-key generator (PKG)1. Since IBS, as in IBC, does not require any certificates

to be exchanged, it can be advantageous over the traditional public-key signature (PKS) systems

in certain scenarios. IBS, in particular, turns out to be quite practical in wireless sensor networks

[LBZ+10, TWZL08], BGP protocol [KLS00], MANET routing [HWS+06] etc.. Therefore, the

question of designing efficient and secure IBS is important in the context of applied cryptography.

Although Shamir, in his 1984 paper, gave a simple RSA-based construction for IBS he was

unable to establish the security of the scheme. Several “secure” RSA based IBS [FS87, GQ90] have

been proposed in the literature since. In recent times, the advent of pairing ushered the way to an

increased interest in research on IBC, and consequently IBS mushroomed [CC02, Her05, Hes03].

1The PKG is a trusted third party whose duty is to create and then communicate the secret keys to the users in
the system through a secure channel.

1

Chapter 1. Introduction 2

1.1 Identity-Based Signatures

Our aim, in this section, is to give an intuitive feel of IBS. A more formal definition follows in

§1.3.2. But first we proceed to describe a basic IBC setup.

PKG

msk

mpk

Alice Bob

uskBob

id :Bob

i
d

:A
li

ce

u
s
k
A
lice

Figure 1.1: A schematic for IBC The dashed line indicates an open channel, whereas the solid line

indicates a secure channel.

A key component in IBC is the private-key generator (PKG). The role of the PKG, as the name

suggests, is to generate the private keys2 corresponding to the users in the system. This is done

through a secure channel as shown for the user Alice with the identity “Alice” in Figure 1.1. It

also generates the master public key mpk which can, in some sense, considered to be the “public

key” of the PKG. Therefore, on a high level, the PKG can be regarded as a trusted third party

that provides the binding between the identity of a user an her secret key–passably analogous to

the certifying authority in the traditional public-key infrastructure (PKI).

The key-escrow problem. An inherent problem with IBC, as one could make out, is the “key-

escrow” problem. As the PKG can compute secret key corresponding to any user, it can decrypt

ciphertext meant for any user (or sign message on behalf of any user) in the system. Some of the

alternatives are distributed PKG [BF01] and certificateless PKC [ARP03].

2The terms ‘private key’ and ‘secret key’ will be used interchangeably throughout the thesis.

Chapter 1. Introduction 3

Signer Verifier

PKG

(σ, id,m)

id

uskid

mpk

Figure 1.2: A schematic for IBS.

The notion of IBS, if you recall, is the extension of the idea of digital signatures to the identity-

based setting. It consists of four probabilistic, polynomial-time (PPT) algorithms Set-up, Key

Extraction, Signing and Verification. The Set-up algorithm is used to generate the master public key

mpk with the exact level of security dictated by a security parameter3. Key Extraction is used by

the PKG to generate the user secret key usk. The user secret key can considered as the signature

by the PKG with the identity of the user being the message and using the master secret key as

the signing key. The algorithms Signing and Verification correspond to the namesake algorithms in

the traditional PKS setting. A signer uses Sign to compute a signature σ on a message m with the

user secret key being the signing key. Finally, this signature can be verified by the verifier using

the Verification algorithm, using just the signer’s identity and the master public key.

1.2 Provable Security

Classical cryptography relied heavily on cryptanalysts. Thus, most of the classical cryptosystems

that are still in use are the time-tested ones. But nowadays, provable security–the “art” of formally

arguing the security of cryptosystems–is fast becoming a de facto standard [KM07, Sho04]. Protocol

designers are expected to support their construction with an argument establishing its security, i.e.

3The security parameter is a variable which measures the level of security in which a cryptographic protocol is
to be deployed. It is expressed using the unary notation; e.g ., for n-bit security level, n = 1n. n determines the
resource requirement of the protocol and, consequently, the capability adversary requires for breaking the protocol.
For example, if a protocol is deployed in 80-bit security level, it would take an adversary O(280) operations to break
the protocol.

Chapter 1. Introduction 4

the security argument. In a nutshell, security is argued through a “game” between a “challenger”–

the party that strives to prove the protocol secure–and an “adversary”–the party that attempts to

break the protocol. Let’s start with the description of the adversary, in particular, the abstraction

that is used to capture its behaviour.

Modelling the adversary. The adversary is modelled as a probabilistic, polynomial-time (PPT)

Turing machine (PTM).4 An adversary taking an input x and producing an output y is denoted by

y
$←− A(x). The adversary may have access to some oracles. These are listed in the superscript; e.g .,

y
$←− AO(·)(x). A PTM handles its internal decision making through a series of (internal) coin tosses

(with some underlying probility distribution). It is desirable, sometimes, to control the internal

decision making of an adversary (modelled as a PTM). This can be accomplished by passing the

internal coins explicitly as an input, say, on a separate tape to the adversary. In this particular

way of modelling, the adversary (in some sense) acts in a deterministic manner. However, it has to

be, then, analysed over the space of these internal coins as in the case of a randomised algorithm.

As for notation, these internal coins are distinguished from the normal input using a semi-colon,

i.e. y ← A(x; ρ). We are now equipped to formally define the notion of “an adversary breaking a

protocol”.

Definition 1. Consider an adversary A trying to break a protocol P deployed in a n-bit security

level. A is said to (ε(n), t(n))-break P if it takes time at most t(n) and is successful with a

probability at least ε(n). We say that A is an (ε(n), t(n))-adversary against P.5

Security models. The security models lay down the schema to be followed while giving a security

argument. It is usually described using a security game between the challenger and adversary. The

security model sets some ground rules regarding the powers the adversary has and the obligation

the challenger has, to the adversary, in the security game. Security models are characterised [PV05]

through an adversarial goal and an attack model–e.g ., in the EU-CMA model, the adversary has to

produce an existential forgery (the adversarial goal) under the chosen-message attack (the attack

model). A detailed discussion on security models and security games is deferred to §1.3.

4We consider only computationally-bounded adversaries.
5Whenever the context is clear, we abuse the notation by omitting n; i.e., we say that A is (ε, t)-adversary against

P.

Chapter 1. Introduction 5

1.2.1 Reductionist Security Arguments

Now that we are aware of the notions relevant to security arguments, let’s see how the security

is actually argued. A prevalent approach in provable security is argument using the reductio ad

absurdum principle. Suppose P is the cryptographic protocol that we want to argue secure. Let

Π be the hard problem6 that P is based on. Our objective is to argue that Π =⇒ M[P]: if

Π is a hard problem, then the protocol P is secure in the security model M.7 Another way to

establish the same would be through the contrapositive ¬M[P] =⇒ ¬Π. Thus, the strategy is

to assume a hypothetical (polynomial-time and possibly probabilistic) adversary A against P and

construct an algorithm B–the so-called reduction algorithm–that harnesses A, to solve the hard

problem Π. Since we presumed Π to be hard, this leads to a contradiction and there cannot exist

such an adversary. Or, in classical complexity theory jargon, solving the hard problem Π is reduced

to breaking the protocol P, i.e., Π ≤ M[P] (or, Π⇐= M[P]). This is illustrated8 in Figure 1.3.

C

Π

B

Π P

A

P

M

Figure 1.3: Argument through contradiction.

The notion can be easily extended to base security of one protocol on another. In order to

base the security of a protocol P (in a security model M) on another protocol P′ (which is secure

in a security model M′), one has to establish M′[P′] ≤ M[P]: given an adversary against P in

the security model M, one has to construct an algorithm that breaks P′ in the security model M′

(resulting in a contradiction).

The reduction algorithm. Let’s see how the reduction algorithm B works. Recall, from the

preceding discussion, that B’s objective is to harness A to solve Π. Suppose that B receives the

instance of the hard problem from its challenger C. It initiates the security game M with the

adversary A by sending a challenge instance of P. Next, B simulates the environment of protocol

6Computationally infeasible problem. See §1.3.3 for an example of hard problem.
7Recall that we use long arrow to denote logical implication and short arrow to denote reductions.
8We follow this convention of block diagrams throughout the thesis. Moreover, oracle access is indicated in the

bottom right corner of the blocks.

Chapter 1. Introduction 6

P to the adversary A. Note that the simulation has to be faithful9 to the actual execution of the

protocol. At the end of the simulation, if A succeeds in breaking P then B has to (somehow) to

solve Π. If B is indeed successful, then we would have reduced Π to P. Thus, B plays the role of

both challenger and adversary (in the respective security games).

Tightness of security reductions. Returning to the preceding discussion, let’s suppose that

A is an (ε, t)-adversary against P. Also, let the reduction B that we designed (ε′, t′)-solve Π. The

tightness gap for B is defined to be

γB =
t′/ε′

t/ε
.

We say that the security of P “degrades” by a factor of γB . A reduction B is said to be “tight”

if t′ ≈ t and ε′ ≈ ε and, by implication, γB is of constant order (O(1)). In other words, B has

to simulate A only a constant number of times before solving Π with a “considerable” advantage.

Likewise, B has polynomial degradation if γB is a polynomial in n (and so forth).

1.2.2 The Random-Oracle Methodology

Hash functions are indispensable to cryptography. The random-oracle methodology was introduced

with the aim of simplifying the security arguments of cryptographic protocols that use hash func-

tions. Although the methodology was first used, in the context of security arguments, by Fiat and

Shamir in their zero-knowledge proof [FS87], it was formalised (and popularised) by Bellare and

Rogaway [BR93].

The idea is to, first, design an ideal system in which all parties, including the adversary A, have

oracle access to a truly random function that represents the hash function–the so-called random

oracle–and prove the security of this ideal system. During the simulation, the random oracle is

under the control of the challenger C (roughly speaking, see [FLR+10] for refinements) and the

adversary is allowed to make (a bounded number of) queries (Qi) to this oracle. The random

oracle is then instantiated by using a cryptographic hash function, say MD5 or SHA-2, giving us

an instance of the ideal system in the real world (see Figure 1.4).

Protocols without random oracles–in the so-called standard model, that is–turn out to be com-

paratively involved; random oracle assumption is known to simplify the construction as well as the

security argument. Plus, the security arguments are tighter (cf. [BF01] and [Wat05]). Moreover,

9Technically speaking, the adversary should not be able to distinguish the simulation of the protocol environment
from the actual execution of the protocol.

Chapter 1. Introduction 7

C

H

Π

A

ΠQi

si

Π

H

Figure 1.4: Random Oracle Methodology

there exist protocols (Schnorr signature [Sch91] for example) for which the only known security

arguments are the ones based on the random oracle assumption. However, proofs in the random-

oracle model provide only a heuristic support for actual security [FLR+10].

1.3 Preliminaries

In this section, we give the formal definition of PKS and IBS, along with their relevant security

models. We also define the discrete-logarithm assumption–the hardness assumption on which the

objects of our interest (Schnorr signature and Galindo-Garcia IBS) are based on. We cover some

of the existing (and relevant) techniques for construction of IBS as well.

1.3.1 Public-Key Signatures

Definition 2 (Public-Key Signature). A PKS scheme consists of three PPT algorithms {K, S,V, . . . ,}.

Key Generation, K(1n): It takes as input the security parameter n (in unary) and outputs the

public key pk and the secret key sk.

Signing, S(m, sk): It takes as input a message m and the secret key of the user sk to generate

a signature σ.

Verification, V(σ,m, pk): It takes as input the signature σ, the message m and the public key

of the user pk. It outputs a bit op which is 1 if σ is valid signature on m or 0 if the signature

is invalid.

The standard correctness condition: 1 ← V(S(m, sk),m, pk), should be satisfied for all m and

(pk, sk)
$←− K(1n). The standard security notion for PKS schemes: existential unforgeability under

chosen-message attack (EU-CMA) [GMR88], is defined below.

Definition 3 (EU-CMA Game). The security of a PKS scheme in the EU-CMA model is argued in

terms of the following game between a challenger C and an adversary A.

Chapter 1. Introduction 8

Set-up: C runs K to obtain a public key pk and a secret key sk. It passes pk as the challenge

public key to A.

Signature query, Os(m): A can adaptively make signature queries to an oracle Os. C

responds by running the algorithm S to obtain a signature corresponding to m. It then sends

σ to A.

Forgery: A outputs a signature σ̂ on a message m̂ and wins the game if the forgery is

i) valid: σ̂ passes the verification on m̂; and ii) non-trivial: A has not queried the signature

oracle with m̂.

The advantage that A has in the above game, denoted by AdvEU-CMA
A (n), is defined as the

probability with which it wins the above game, i.e.

P(1← V(σ̂, m̂, pk) : (sk, pk)
$←− K(1n); (σ̂, m̂)

$←− AOs(·)(pk))

provided σ̂ is a non-trivial forgery on m̂. A is said to be an (ε, t, qs)-forger of an PKS scheme if

it has advantage of at least ε in the above game, runs in time at most t and queries the signature

oracle at most qs times.

Definition 4 (Full-Security of PKS). We say that a PKS is existentially unforgeable against a

chosen-message attack (fully-secure, in short) if for any PPT adversary A the function AdvEU-CMA
A (n)

is negligible10 in n.

Remark 1 (No-Message Attack). The adversarial task of producing an existential forgery under

the no-message attack (EU-NMA), also known as the key-only attack (EU-KOA), can be regarded

as a particular, weaker, case of the task of producing an existential forgery under chosen-message

attack, with qs = 0.

Weakly-secure PKS. A weaker notion of PKS security that we are interested in is existential

forgery under generic chosen-message attack (EU-GCMA) [GMR88]. The distinguishing feature of

EU-GCMA model is that the adversary commits, beforehand, to a set of messages {m1, . . . ,mqs}

to the challenger. In response, the challenger gives it, along with challenge public key, a set of

signatures corresponding to the committed messages. At the end of the game, the adversary has

to forge on a message that is not part of the committed set. A more formal definition follows.

10A function f : R 7→ R is negligible if for any n > 0, we have |f(x)| < 1/kn for sufficiently large x [BF01].

Chapter 1. Introduction 9

Definition 5 (EU-GCMA Game). The security of a PKS scheme in the EU-GCMA model is argued

in terms of the following game between a challenger C and an adversary A.

Commitment: A commits to a set of messages M̃ := {m1, . . . ,mqs}.

Response: C runs G to obtain the public key pk and the secret key sk. It runs the signing

algorithm S to obtain a set of signatures {σ1, . . . , σqs} corresponding to M̃. Finally, it sends

the challenge public key pk along with {σ1, . . . , σqs} to A.

Forgery: A outputs a signature σ̂ on a message m̂ and wins the game if the forgery is i) valid:

σ̂ passes the verification on m̂; and ii) non-trivial: m̂ is not a part of the committed set M̃.

The advantage that A has in the above game, denoted by AdvEU-GCMA
A (n), is defined as the

probability with which it wins the above game, i.e.

P(1← V(σ̂, m̂, pk) ∧ m̂ 6∈ M̃ : M̃ $←− A(qs); (sk, pk)
$←− K(1n); (σ̂, m̂)

$←− A(pk, σ1, . . . , σqs))

An adversary A is said to be an (ε, t, qs)-forger of an PKS scheme if it has advantage of at least ε

in the above game, runs in time at most t, after initially having committed to a set of qs messages.

Definition 6 (Weak-Security of PKS). We say that a PKS is existentially unforgeable against a

generic chosen-message attack (weakly-secure, in short) if for any PPT adversary A the function

AdvEU-GCMA
A (n) is negligible in n.

1.3.2 Identity-Based Signatures

Definition 7 (Identity-Based Signature). An IBS scheme consists of four PPT algorithms {G,E, S,V}

described below.

Set-up, G(1n): It takes as input the security parameter n (in unary). It outputs the master

secret key msk and the master public key mpk.

Key Extraction, E(id, msk): It takes as input the user’s identity id, the master secret key msk

to generate a secret key usk for the user.

Signing, S(id,m, usk): It takes as input the user’s identity id, a message m and the user’s

secret key usk to generate a signature σ.

Chapter 1. Introduction 10

Verification, V(σ, id,m, mpk): It takes as input a signature σ, a message m, an identity id

and the master public key mpk. If outputs a bit op which is 1 if σ is a valid signature on

(id,m) or 0 if the signature is invalid.

The standard correctness condition: 1 ← V(S(id,m, usk), id,m, mpk), should be satisfied for all

id,m, (msk, mpk)
$←− G(1n) and usk

$←− E(id, msk). As for security, we use the detailed EU-ID-CMA

model given in [BNN04].

Definition 8 (EU-ID-CMA Game11). The security of an IBS scheme in the EU-ID-CMA model is

argued in terms of the following game between a challenger C and an adversary A.

Set-up: C runs G to obtain the master public key mpk and the master secret key msk. It

passes mpk as the challenge master public key to A.

Queries: A can adaptively make extract queries to an oracle OE and signature queries to an

oracle Os. These queries are handled as follows.

– Extract query, OE(id): A asks for the secret key of a user with identity id. If there has

already been an extract query on id, C returns the user secret key that was generated

during the earlier query. Otherwise, C uses the knowledge of msk to run E and generate

the user secret key usk, which is then passed on to A.

– Signature query, Os(id,m): A asks for the signature of a user with identity id on

a message m. C first obtains, as specified the extract query, a user secret key usk

corresponding to id. Next, it uses the knowledge of usk to run S and generate a

signature σ, which is passed to A.

Forgery: A outputs a signature σ̂ on an identity îd and a message m̂, and wins the game

if the forgery is i) valid: σ̂ passes the verification on (îd, m̂); and ii) non-trivial: A has not

queried the extract oracle with îd, nor has it queried the signature oracle with (îd, m̂).

The advantage that A has in the above game, denoted by AdvEU-ID-CMA
A (n), is defined as the

probability with which it wins the above game, i.e.

P(1← V(σ̂, îd, m̂, mpk) : (msk, mpk)
$←− G(1n); (σ̂, îd, m̂)

$←− A
OE (·),Os(·,·)(mpk))

11The security game in [BNN04], i.e. Expuf-cma
IBS,F̄ , is explained in terms of the three oracles: INIT, CORR and SIGN.

Here we use an equivalent formulation in terms of Extract and Signature queries.

Chapter 1. Introduction 11

provided σ̂ is a non-trivial forgery on (îd, m̂). An adversary A is said to be an (ε, t, qε, qs)-forger

of an IBS scheme if it has advantage of at least ε in the above game, runs in time at most t and

makes at most qε (resp. qs) extract (resp. signature) queries.

Definition 9 (ID-Security of IBS). We say that an IBS is EU-ID-CMA-secure (ID-secure, in short)

if for any PPT adversary A the function AdvEU-ID-CMA
A (n) is negligible in n.

The notion of selective-identity. The selective-identity (sID) model for identity-based crypto-

graphic schemes was introduced in [CHK03]. The distinguishing feature of this model is that the

adversary has to commit, beforehand, to a “target” identity–i.e., the identity which it intends to

eventually forge on.

Definition 10 (EU-sID-CMA Game). The security of an IBS scheme in the EU-sID-CMA model is

argued in terms of the following game between a challenger C and an adversary A.

Commitment: A commits to a target identity ĩd.

Set-up: C runs G to obtain the master keys (mpk, msk). It passes mpk as the challenge master

public key to A.

Queries: A can adaptively make extract queries to an oracle OE and signature queries to an

oracle Os. It is restricted though from making extract query on the target identity ĩd. These

queries are handled as in the EU-ID-CMA game.

Forgery: A outputs a signature σ̂ on a message m̂ and an identity ĩd, and wins the game if

the forgery is i) valid: σ̂ passes the verification on (ĩd, m̂); and ii) non-trivial: A has queried

the signature oracle with (ĩd, m̂).

The advantage that A has in the above game, denoted by AdvEU-sID-CMA
A (n), is defined as the

probability with which it wins the game, i.e.

P(1← V(σ̂, ĩd, m̂, mpk) : ĩd
$←− A; (msk, mpk)

$←− G(1n); (σ̂, ĩd, m̂)
$←− A

OE (·),Os(·,·)(mpk))

provided σ̂ is a non-trivial forgery on (ĩd, m̂). An adversary A is said to be an (ε, t, qε, qs)-forger of

an IBS scheme in the EU-sID-CMA model if it has advantage of at least ε in the above game, runs

in time at most t and makes at most qε (resp. qs) extract (resp. signature) queries.

Chapter 1. Introduction 12

Definition 11 (sID-Security of IBS). We say that an IBS is EU-sID-CMA-secure (sID-secure, in

short) if for any PPT adversary A the function AdvEU-sID-CMA
A (n) is negligible in n.

Remark 2. If the security argument models the hash functions as random oracles, the security

games are to be modified, appropriately, to accommodate queries to the random oracles.

1.3.2.1 Existing Techniques for Constructing IBS

The task of constructing IBS is generally considered to be much easier than constructing IBE.

[BNN04] contains a comprehensive list of such techniques, along with the security arguments. We

discuss, although briefly, three techniques–one concrete and two generic–that are relevant to the

thesis.

From Schnorr signatures. The concrete technique that we are interested in is based on the

Schnorr signature scheme [Sch91]. Galindo and Garcia [GG09] devised a way concatenate two

Schnorr signatures to produce an identity-based signature. The user secret key can be considered

as the Schnorr signature by the PKG on the identity of the user, using the master secret key as the

signing key; analogously, the signature on a message by a user is the Schnorr signature, by that

user, on the message using her user secret key as the signing key. The resultant IBS is simple and

efficient. We analyse its construction and security argument in the first part of our thesis.

The “folklore” construction. Although the cryptographic research community was long aware

of this (generic) technique, it was formalised by Bellare et al . [BNN04]. It involves two applications

of PKS (certificate). In a nutshell, the PKG generates a (public-private) key-pair for a user and

then binds it to the identity of the user by using a certificate generated using its (master) secret

key. Thus the PKG, to a large extent, plays the role of a certifying authority in PKI. Interestingly,

no random oracles are involved.

The (existence of) folklore construction reduces the task of constructing an IBS to that of

constructing a PKS. A PKS, on the other hand, can be derived from a weakly-secure PKS using

a chameleon hash function (CHF) [KR00]. This approach was used implicitly in [ST01] and, later,

formalised in [HW09]. This, in turn, implies the task of constructing IBS is reduced to that of

constructing a weakly-secure PKS and a CHF. It also reiterates the fact that it is much easier

(even in the standard model) to construct IBS schemes.

Chapter 1. Introduction 13

From sID IBS. Recall that the selective-identity (sID) model for IBC is considered to be weaker

than the full-identity (ID) security model. However, it is much easier to design a protocol that is

sID-secure than one that is ID-secure. Therefore, transforming an sID IBS to an ID IBS, in a generic

manner, is an interesting problem to pursue, both from theoretical and practical point of view. An

efficient (comparatively) black-box method to convert a sID-secure IBE scheme to ID security was

suggested in [BF01]. But the method relies on random oracles [BR93]. This was followed by

[BB04a], in which the problem is solved in the standard model, albeit with an exponential loss of

tightness. Both these methods can be adapted to IBS. To the best of our knowledge, there doesn’t

exist an efficient generic transformation from sID IBS to ID IBS in the standard model. In the

second half of our thesis we concentrate on this exact problem.

1.3.3 Discrete-Logarithm Assumption

Let GDL be a (randomised) group generator: it takes as input a security parameter n (in unary)

and outputs (G, g, p), where G is a cyclic group of prime order p generated by g.12 The discrete-

logarithm problem (DLP) is defined through the following game between a challenger C and an

adversary A (see Figure 1.5).

Definition 12 (DLP Game). C invokes the group generator to generate a cyclic group: (G, g, p) $←−

GDL(n). Next, it sends to A the challenge DLP instance (G, g, p, h), where h := gα with α
U←− Zp.

A wins the game if it correctly finds the discrete logarithm of h (with respect to the generator g),

i.e., α′ = α. The advantage A has solving the DLP is the probability with which it wins the game,

i.e.,

AdvDLP
A (n)

def
= P(α′ = α : (G, g, p) $←− GDL(n);α

U←− Zp;α′
$←− A(G, p, g, gα)).

C

DLP

A

DLP(G, g, p, gα)

DLP

α

Figure 1.5: The DLP Game.

Definition 13 (Discrete-Logarithm Assumption). The (ε, t)-discrete-log assumption holds if no

adversary that takes takes time at most t has advantage at least ε in the DLP game. In general, the

12We sometimes omit the description of the group generator for sake of convenience and, also, consistency.

Chapter 1. Introduction 14

(asymptotic) discrete-log assumption holds if for all PPT adversaries A the function AdvDLP
A (n) is

negligible in n; we say that GDL generates DL-secure groups [GG09].

1.4 Organisation of the Thesis

The Galindo-Garcia IBS (GG-IBS) is based on the Schnorr signature scheme [Sch91]. Hence, we

devote Chapter 2 to the particulars of Schnorr signature: its construction and security argument.

This, in turn, lends us some insight into GG-IBS, especially its security argument. The machinery of

(oracle) replay attack13 [PS00] plays a pivotal role in the security argument of Schnorr signature and,

therefore, we place emphasis on its development. This includes a discourse on the two techniques

that are used to launch the replay attack: the Rewinding Technique and the Replicating Technique.

Plus, we discuss an abstraction of the replay attack, called General Forking [BN06], that aids in

simplifying security arguments. Finally, we augment the “elementary” replay attack (which involves

only one random oracle) to include multiple random oracles and nested forkings. This yields the

Multiple-Forking Algorithm [BPW12].

With the know-how on Schnorr signature in our arsenal, we revisit GG-IBS itself in Chapter 3.

GG-IBS is derived through a simple and elegant concatenation of two Schnorr signatures. It works

in the discrete-log setting but does not require pairing. The security is established by reducing the

problem of computing the discrete-log to breaking the IBS, through two (reduction) algorithms B1

and B2. Both B1 and B2 employ the Multiple-Forking (MF) Algorithm. The focus of the chapter

is on this security argument: we find that it is ridden with flaws and ambiguities. In particular,

we show that the reduction B1 in [GG09] fails in the standard security model for IBS [BNN04],

whereas the reduction B2 is incomplete. As a remedy, we provide a new, detailed, security argument

which allows tighter reductions [CKK13].

In Chapter 4, we explore possible avenues for further improvement in the tightness of GG-

IBS security argument. As already stated, the machinery of MF Algorithm plays a central role

in the security argument of GG-IBS. However, it is also responsible for the huge degradation in

the concrete security of the IBS. Thus, a natural question arises: Can the nested replay attack

(on the GG-IBS adversary) be launched more effectively than in the MF Algorithm? To this

end, we introduce the two notions pertaining to random oracles: dependency and independency.

Independency follows naturally for GG-IBS, whereas, dependency has to be induced through a

13We will use the terms forking and (the process of launching) oracle replay attack interchangeably.

Chapter 1. Introduction 15

tweak in construction. As it turns out, incorporating dependency and independency, in conjunction,

results in a cleaner, (significantly) tighter security argument for GG-IBS completing the final piece

of the GG-IBS jigsaw.

In Chapter 5, the second part of the thesis, we look into the concept of selective-identity (sID)

[CHK03] in the context of IBS. Since its induction, the sID model for identity-based cryptosystems

and its relationship with various other notions of security has been extensively studied. As a result,

it is a general consensus that the sID model is much weaker than the full-identity (ID) model.

The main focus is on the problem of constructing an ID-secure IBS given an sID-secure IBS in

the standard model and with reasonable security degradation. We accomplish this by devising a

generic construction which uses as black-box: i) a chameleon hash function and ii) a weakly-secure

public-key signature [CK13b]. We argue that the resulting IBS is ID-secure but with a tightness

gap of O(qs), where qs is the upper bound on the number of signature queries that the adversary

is allowed to make.

Chapter 2

Schnorr Signature and the Oracle

Replay Attack

2.1 Introduction

We devote this chapter to the particulars of Schnorr signature scheme: its construction and security

argument. We also emphasise on developing the machinery of oracle replay attack [PS00] which

plays a pivotal role in the security argument of Schnorr signature scheme (as well as other class1

of signature schemes [ElG85, Oka93]). Since the Galindo-Garcia IBS (GG-IBS) scheme is based on

Schnorr signature, the discussion lends us some insight into GG-IBS. Plus, we discuss an abstraction

of the replay attack, called General Forking [BN06], that aids in simplifying security arguments.

Finally, we augment the “elementary” replay attack (which involves only one random oracle) to

include multiple random oracles and nested forkings. This yields the Multiple-Forking Algorithm

[BPW12].

2.2 Schnorr Signature

The Schnorr signature scheme is based on the discrete-log problem (see Definition 12). It can be

concocted from the Schnorr identification scheme [Sch90] by using the Fiat-Shamir transformation

[FS87]. We now describe a (minor) variant of this signature scheme that helps us in studying

GG-IBS.

1To be precise, the signature schemes obtained from three-round identification schemes (Σ-protocols) through the
Fiat-Shamir transformation [FS87].

16

Chapter 2. Schnorr Signature and the Oracle Replay Attack 17

2.2.1 Construction

Parameter Generationa, G(1n): Invoke the group generator GDL (on 1n) to obtain (G, g, p).

In addition, let H be a hash function H : {0, 1}∗ 7→ Zp. Return pp := (G, g, p,H) as public

parameters.

Key Generation, K(pp): Select z
U←− Zp and set Z = gz. Return sk := (z, pp) as the secret key

and pk := (Z, pp) as the public key.

Signing, S(m, sk): Select r
U←− Zp and set R := gr. Return σ := (y,R) ∈ Zp×G as a signature

on the message m, where

y := r + zc and c := H(m,R).

Verification, V(σ,m, pk): Parse σ as (y,R) and compute c := H(m,R). The signature is valid

if

gy = R · Zc.

Figure 2.1: The Schnorr Signature Scheme.

aFor convenience, we have split the Key Generation algorithm into a Parameter Generation algorithm G and an

actual Key Generation algorithm K. This aids in generating multiple public-private key-pairs in the same group

setting.

Remark 3. We use the convention SH to denote the usage of hash function H by the Signing algo-

rithm S. We use this convention as the Signing algorithm may be used with different hash functions.

Simply put, the hash function too is considered to be a parameter to the Signing algorithm. This

applies to the Verification algorithm V as well.

2.2.2 Security of Schnorr Signature: An Intuition

Suppose that we are working in a group G where the discrete-log assumption holds (see Defini-

tion 13). Consider an adversary A with the capability to carry out chosen-message attack on the

Schnorr signature scheme. Let {σ1, . . . , σn} be the signatures that A procures. Moreover, (for each

i ∈ {1, . . . , n}) let: i) σi be a signature on mi, and ii) be of the form (yi, Ri) with, Ri = gri ,

yi = ri + ciz and ci = H(mi, Ri). The adversary’s view is captured by the following system of n

Chapter 2. Schnorr Signature and the Oracle Replay Attack 18

linear congruences (modulo p) in the (n+ 1) unknowns {r1, . . . , rn, z}.

1 0 · · · 0 c1

0 1 · · · 0 c2

...
...

. . .
...

...

0 0 · · · 1 cn

×

r1

r2

...

rn

z

=

y1

y2

...

yn

(2.1)

It is evident from basic linear algebra that the system in (2.1) has p solutions. Besides, the discrete-

log assumption ensures that it is infeasible for A to extract information regarding the ris from the

corresponding Ris. Thus, it is hard for A to learn the value of the secret key z. However, if (by some

means) it secures two equations that use the same randomiser r but with different hash value c, it

can easily solve for z (as the system is reduced to n linear congruences in n unknowns). Keeping

this in mind, we argue the security of Schnorr signature.

2.2.3 Basic Security

Let’s start with the simpler (but weaker, see Remark 1) EU-NMA model for PKS. For the time

being, we restrict ourselves to a particular class of (strong) adversaries which we refer to as “per-

fect” adversaries. A perfect adversary, against a particular scheme, has the maximum (possible)

advantage in breaking the scheme (in some appropriate security model). Therefore, for the perfect

adversary A that we consider against the Schnorr signature scheme, in the EU-NMA model, we have

AdvEU-NMA
A (n) = 1.

Claim 0.1 (Basic security of Schnorr signature). Given a perfect adversary A against the Schnorr

signature scheme in the EU-NMA model, it is possible to construct an algorithm B that solves the

DLP, provided the hash function H is modelled as a random oracle with an upper bound of q queries.

In other words,

DLP ≤O(1) EU-NMA [Schnorr Signature].

Argument. Our objective is to construct an algorithm B that simulates the protocol environment

Chapter 2. Schnorr Signature and the Oracle Replay Attack 19

C

DLP

B

DLP S

H

A

S∆

DLP

α

pk

EU-NMA

σ̂

Figure 2.2: (Basic) Security Argument for Schnorr PKS (denoted by S).

for the Schnorr signature adversary A in the EU-NMA model. At the end of the simulation, A

(being a perfect adversary) forges successfully and B, in turn, has to somehow break the DLP.

Thus, B plays the role of a challenger to A in the EU-NMA game; at the same time, it plays the

role of an adversary in the DLP game (see Figure 2.2).

First round of simulation. The simulator B receives a DLP instance ∆ = (G, g, p, gα) from its

own challenger C and its objective is to extract α. B embeds the problem instance gα in Z and,

thus, passes pk := (G, g, p, gα) as the challenge public key to A. A is allowed access to a random

oracle H but it does not have access to the signature oracle. The adversary A makes a series of

hash oracle queries {Q1, . . . , Qq} (with each Qi of the form H(mi, Ri)) which the challenger responds

to with {c1, . . . , cq}
U←− Zp. At the end of the simulation, it successfully forges σ̂ = (y,R) on some

message m̂ (with R = gr, c = H(m̂,R) and y = r + αc). Since H is a random oracle, for A to have

produced the forgery σ̂ with a non-negligible advantage, it must have made the query H(m̂,R) at

some juncture during its simulation2. In other words, there must exist an index 1 ≤ I ≤ q such

that the query QI is H(m̂,R) (see Figure 2.3). This index is termed the “target” H-index and

the query, the “target” H-oracle query. To paraphrase, the random oracle query that is involved in

the fabrication of the forgery, by the adversary, is called the target oracle query; the index of this

query is called the target index.

2 Let S denote the event that A successfully forges σ̂ = (y,R) on some message m̂. In addition, let H denote the
event that A queries the random oracle with H(m̂,R)–the “target” H-oracle query. Thus, we have

P(S) = P(S ∧H) +P(S ∧ ¬H)

= P(S ∧H) +P(S | ¬H)P(¬H).

The term S|¬H indicates that A has forged successfully, but, without actually having made the target H-oracle query
H(m̂,R). However, the value of H(m̂,R) is necessary in order to forge. Therefore, in this situation, the best that
the adversary can do to conjure up with the value of H(m̂,R) is to guess it. However, the probability with which
the adversary could have correctly anticipated the output is negligible (1/p to be precise). Thus the P(S | ¬H) term

(weighed down by the 1/p factor) is negligible and as a result P(S) ≈ P(S ∧ H). Simply put, A has to make the

target random oracle query to be able to forge with a non-negligible probability.

Chapter 2. Schnorr Signature and the Oracle Replay Attack 20

Q1 Q2 QI : H(m̂,R) QI+1 Qq σ̂ = (y = r + αc,R)
c1 c = cI cq

Figure 2.3: The “target” random oracle query H(m̂,R).

Second round of simulation. Now, let’s suppose that the simulator B (by some means) manages

to “turn back the clock” to the juncture when A made the target oracle query QI . Next, it simulates

A again from QI but, this time, with a different set of outputs to the random oracle queries (starting

with QI)
3. This constitutes B carrying out an oracle replay attack on the adversary A–we say that

the adversary A is “forked” at the point QI .
4 Let’s denote this new round of simulation of the

QI+1 Qq σ̂ = (y = r + αc,R) //round 0

Q1 Q2 QI : H(m̂,R)

Q′I+1 Q′q σ̂′ = (y′ = r + αc′, R) //round 1

c

c′

Figure 2.4: A successful oracle replay attack on A.

adversary by round 1 and the initial round by round 0. Suppose, at the end of round 1, the

adversary forges σ̂′ on some message m̂′ (with R′ = gr
′
, c′ = H(m̂′, R′) and y′ = r′ + αc′). Thus

the challenger has secured two forgeries, σ̂ and σ̂′ with y = r + αc and y′ = r′ + αc′. Let I ′ be the

target H-index in round 1. Now, there are two possibilities with respect to I and I ′: i) they could

be different; or ii) they could match (I ′ = I). In the first case, B cannot extract α as it possesses

(only) two congruences in three unknowns. However, in the second case the adversary has made

the same commitment (m̂,R), but received two, different, oracle outputs (see Figure 2.4). Thus,

the simulator ends up with two forgeries {σ̂, σ̂′} with {y = r + αc, y′ = r + αc′}–a system of two

linear congruences in two unknowns–and it easily solves for α (by computing (y−y′)/(c−c′)). This

completes our argument.

With a bit more effort, it is possible to cater to the signature queries as well. Thus, the above

3Note that a random oracle is distinguished by its outputs–the random function that represents the oracle. There-
fore, we can conceive a “new” random oracle by changing the outputs from the “original” random oracle. However,
in this particular case, the new random oracle has to agree with the original random oracle up to the target oracle
query. Simply put, one has to use two different random functions that agree up to a particular point (the point being
the target query). We elaborate on how to accomplish this in the next section.

4We will use the terms forking and (the process of launching) oracle replay attack interchangeably.

Chapter 2. Schnorr Signature and the Oracle Replay Attack 21

argument can be extended to the full model for PKS, i.e., EU-CMA. We omit this discussion to

avoid digression. However, we are interested in security of Schnorr signature against more “general”

probabilistic, polynomial-time (PPT) adversaries. But, this transition requires some additional

tools. We discuss this in the next section, along with the discourse on the oracle replay attack and

its analysis (which we had omitted in the proof).

2.3 The Oracle Replay Attack

In the previous section, we demonstrated how the (oracle) replay attack was used in order to

carefully manipulate the adversary and obtain two related signatures. However, we had refrained

from divulging the details on the replay attack. It was used at a “black-box” level. In this section,

our focus is on the replay attack itself. We discuss two approaches: the “Replicating” Technique

and the “Rewinding” Technique, that are used to carry out replay attacks. In addition to this,

we “lift” the (basic) security argument given in §2.2.3 to accommodate a more “general” PPT

adversary. We end up with:

Theorem 1 (The Forking Lemma, Pointcheval-Stern [PS00]5). Given an ε-adversary A against

the Schnorr signature scheme in the EU-CMA model, it is possible to construct an algorithm B that

solves the DLP with an advantage ε′ ≥ ε2/4q, provided the hash function H is modelled as a random

oracle with an upper bound of q queries. In other words,

DLP ≤O(q) EU-CMA [Schnorr Signature].

The security argument is enabled, primarily, by the “Splitting” Lemma [PS00] which we discuss

next.

2.3.1 The Splitting Lemma

Let X and Y be two finite sets (with some underlying probability distribution) with |X| = m and

|Y| = n. Also, let T denote the “universal” set X×Y. A pair (x, y) ∈ X×Y is deemed to be good

if it satisfies a certain property. Let V denote the set of all such good pairs. Suppose that at least

5It is possible to give a simpler, cleaner, security argument using the notion of “general forking”.

Chapter 2. Schnorr Signature and the Oracle Replay Attack 22

γ fraction of the pairs in X × Y are good, i.e., P(V) ≥ γ. We define a function k : X 7→ P(Y) as

k(x)
def
= {y ∈ Y | (x, y) ∈ V}.

k can be used to count, for a particular x, the number of elements y ∈ Y such that (x, y) forms a

good pair. For some β < γ, we define the (sub)set of better pairs of V as

V∗ def
= {(x, y) ∈ V | |k(x)| ≥ (γ − β)n}.

Thus, a good pair (x, y) is better if x forms good pairs with at least (γ−β) fraction of the elements

of Y.

Lemma 1 (The Splitting Lemma, Pointcheval-Stern [PS00]6). The following propositions hold on

the aforementioned assumptions:

1. P(V∗) ≥ β, i.e., at least β fraction of pairs in T are better.

2. P((x, y′) ∈ V | (x, y) ∈ V∗; y′ $←− Y) ≥ (γ − β), i.e., given a better pair (x, y), the probability

with which the pair (x, y′) (with y′ sampled randomly from Y) is good is at least (γ − β).

3. P(V∗ | V) ≥ β/γ, i.e., a good pair is better with a probability of at least β/γ.

Argument. We begin with Proposition 2. It is not difficult to see that it follows from the definition

of good and better sets. Moving on, we establish Proposition 1 through contradiction. Suppose

P(V) ≥ γ and P(V∗) < β, then we have

P(V) = P(V∗) + P(V \ V∗) < β + P(V \ V∗). (2.2)

Now, there can be at most m distinct x elements in V \V∗. In addition, for each such x ∈ V \V∗,

|k(x)| < (γ − β)n (by definition). Therefore (2.2) yields,

P(V) < β +
|k(x)|.m
mn

< β +
(γ − β)n.m

mn
= γ.

This contradicts our assumption that at least γ fraction of elements in T are good (P(V) ≥ γ),

thus, establishing Proposition 1. Finally, we establish the Proposition 3 using Bayes’ theorem

6Also refer to [Kia07].

Chapter 2. Schnorr Signature and the Oracle Replay Attack 23

as shown below.

P(V∗ | V) = P(V | V∗)P(V∗)/P(V)(by Bayes’ theorem)

≥ β/γ(using Proposition 1) (2.3)

Note that the second step (P(V∗ | V) = 1) follows from the fact that a better pair is always good.

This concludes the argument.

The Splitting Lemma: An alternative formulation. Koblitz-Menezes [KM07] explained the

Splitting Lemma using a different perspective from that in Lemma 1. This comes in handy in

certain scenarios. The sets X, Y (hence T) and V, as well as the function k, are defined as in the

previous formulation. For some β < γ, we define the (sub)set of better elements of X as

X∗ = {x ∈ X | |k(x)| ≥ (γ − β)n}.

Thus, an element x ∈ X is better if it forms good pairs with at least (γ−β) fraction of the elements

of Y.

Lemma 2 (The Splitting Lemma, Koblitz-Menezes [KM07]). The following propositions hold on

the aforementioned assumptions:

1. P(X∗) ≥ β, i.e., at least β fraction of elements in X are better.

2. P((x, y) ∈ V | x ∈ X∗ ∧ y′ $←− Y) ≥ γ − β, i.e., given a better element x, the probability with

which the pair (x, y) (with y sampled randomly from Y) is good is at least γ − β.

Argument. As in Lemma 1, Proposition 2 follows by definition. Proposition 1 is, again,

established through contradiction. Provided that P(V) ≥ γ and P(X∗) < β, let’s count the number

of good pairs in T. For any good pair (x, y), the coordinate x comes from either X∗ or X \ X∗.

Keeping this in mind, we define the two sets V1 and V2 as follows.

V1 = {(x, y) | x ∈ X∗ ∧ y ∈ k(x)} V2 = {(x, y) | x ∈ X \ X∗ ∧ y ∈ k(x)}

It follows from the definition that

P(V) = P(V1) + P(V2) < β · 1 + 1 · (γ − β) = β. (2.4)

Chapter 2. Schnorr Signature and the Oracle Replay Attack 24

(2.4) contradicts our initial assumption that P(V) ≥ γ and that concludes the argument.

Remark 4. We refer to the Splitting Lemma by (γ, β)-Splitting Lemma. For a particular value of

γ, the optimal value of β depends on the way the replay attack is carried out. This is demonstrated

in §2.3.2.3.

The Splitting Lemma in the context of signature schemes. Recall the basic security

argument for Schnorr signature scheme from §2.2.3. We had assumed a perfect adversary–an

adversary capable of forging every time. In other words, the adversary is successful irrespective of

the input (which includes the output of the random oracle queries it made). Next, let’s consider

a more general adversary with a success probability of ε. The good set can be regarded as (the

set of) those particular inputs for which the adversary is able to forge a signature successfully7.

Thus for an adversary with success probability ε, at least ε fraction of the inputs results in a valid

forgery; in other words, γ = ε.8 As for the perfect adversary, we can consider any input to be good,

i.e., γ = ε = 1. Although the discussion pertains to Schnorr signature scheme, it applies to other

signature schemes as well.

2.3.2 Launching the Oracle Replay Attack

Let’s go back to the (basic) security argument of the Schnorr signature scheme, especially, the way

the replay attack was carried out. The simulator “turned back the clock” to a “critical” juncture

and then continued with a new simulation with a different “setting”. In this section, we discuss

two approaches by which one can actually carry out the replay attack: the Replicating Technique

and the Rewinding Technique. This would explain how to turn back the clock, what comprises a

critical point and what we mean by a different setting. Finally, we analyse the two techniques using

the Splitting Lemma. We stick to Schnorr signature and will be constantly referring back to the

basic security argument from §2.2.3.

7Caveat: Recall our modelling of the adversary. We had assumed the adversary to be a probabilistic (polynomial-
time) Turing machine. Now, consider two simulations of the adversary on a specific input. Its behaviour, during
these two simulations, depends on the internal coin tosses. Therefore, it may not necessarily be successful during
both the simulations. This means that our classification of an input as good is a bit ambiguous. However, it serves
the purpose of lending an intuitive explanation. A sound definition of good input has to take into account these
internal coin tosses as well. We adopt this approach from the next section.

8We may, at times, use a more refined definition of good. See §2.3.2.3 for an example of such a definition.

Chapter 2. Schnorr Signature and the Oracle Replay Attack 25

Replicating and rewinding: an analogy. Before delving into the technical details, we would

like to give an intuitive overview of the two approaches. We adopt popular science-fiction subjects

for analogy. Intuitively, the Rewinding Technique can be likened to the concept of time travel.

The adversary (modelled as a probabilistic Turing machine) is executed once. At the end of this

round, we have sufficient knowledge about the critical point. The “rewinding” attribute of a Turing

machine (which enables us to trace its actions back to a previous state of progress) is, then, used

to restore the adversary to this critical point. The adversary is then simulated again, but, with a

setting which is different from the initial round of simulation. The clock is thus, literally, turned

back on the adversary.

On the other hand, the Replicating Technique can be likened to the concept of parallel uni-

verses9. At some (random) point during its simulation, the adversary is paused and we produce

another, identical, copy of it10. Then, these two instances are simulated independently, but, each

with a different setting. Finally, we hope the point at which we diverged turns out to be the critical

point. To sum it all up, we have two adversaries, identical up to a certain point, but with behaviour

differing from that point, as if in parallel universes11. We now move on the technical details.

2.3.2.1 The Replicating Technique

Let’s return to the security argument of the Schnorr signature scheme. The critical point in the

simulation is precisely the juncture when the adversary A makes the target oracle query QI . The

simulator starts by making a guess i of this target index I. Next, B continues with the simulation

until the adversary A makes the ith query. At this juncture, B produces a replica of A which we

denote by A′. The simulator, then, proceeds with the simulation of these two instances of the

adversary independently–forking, by replicating the adversary at QI . However, in order to induce

a different setting in the two rounds (from Qi), B responds to the H-oracle queries with different

outputs: A’s queries are responded to with {ci, . . . , cq}, whereas, those of A′ with {c′i, . . . , c′q}, as

shown in Figure 2.5 below.

At the end of the two rounds, the simulator is in possession of two forgeries, one each due

to A and A′. Let I and I ′ be the target indices for the two rounds. The forking is successful if

the simulator’s guess of the target index, i.e. i, turns out to be correct for both the rounds, i.e.,

9It is also referred to as a multiverse. See the introductory chapter of [Teg03] for a intuitive explanation of parallel
universes.

10This is possible as the adversary is modelled as a Turing machine.
11Interestingly, the concepts of time travel and parallel universes are closely related.

Chapter 2. Schnorr Signature and the Oracle Replay Attack 26

Q1 Q2 Qi−1 Qi Qi+1 Qq σ̂

Q1 Q2 Qi−1 Qi Q′i+1 Q′q σ̂′

c1 ci−1 ci

C
O

P
Y

c′i

cq

c′qc1 ci−1

Figure 2.5: Oracle replay attack carried out by replicating.

I ′ = I = i.

2.3.2.2 The Rewinding Technique

The approach adopted to launch the replay attack using the Rewinding Technique is fundamentally

different from that in the Replicating Technique. Nevertheless, it still involves two simulations of the

adversary. But in the Rewinding Technique, contrary to the Replicating Technique, the challenger

first completes a full simulation of the adversary as shown in round 0 in the figure below.

QI+1 Qq σ̂ //round 0

Q1 Q2 QI−1 QI

Q′I+1 Q′q σ̂′ //round 1

c1 cI−1

cI

c′I

cq

c′q

Figure 2.6: Oracle replay attack carried out by rewinding.

At the end of the round, the simulator is in possession of a forgery σ̂ = (y,R) on some message

m̂. The forgery, in turn, contains sufficient information about the critical point for that particular

round–it is, precisely, the juncture when the adversary made the target oracle query H(m̂,R), which

is denoted in Figure 2.6 by QI . The simulator, next, rewinds12 the adversary A (which is modelled

12We discuss a rather näıve approach that could be used to rewind the adversary, which is modelled as a probabilistic
Turing machine. An elegant, more abstract, approach which involves the alternative modelling the adversary (as a
deterministic Turing machine) is discussed later.

The state of progress of a Turing machine is (completely) determined by its current state (from the state register),
the contents of the tape and the position of the head on the tape. The basic idea involved in rewinding is as follows.
The simulator explicitly saves the state of progress of the adversary every time it queries the random oracle. To be
precise, it saves the current state (from the state register), the contents of the tape and the position of the head on a
separate, external, tape. The simulator, thus, may have to save at most q states of progress. At the end of the round,

Chapter 2. Schnorr Signature and the Oracle Replay Attack 27

as a Turing machine) to this critical point and then continues with the simulation of the adversary,

but with a different setting–forking, by rewinding the adversary to QI . Let’s call this round 1. A

different setting is induced in round 1, as in the Replicating Technique, by using a different set of

outputs in response to the random oracle queries–{c′I , . . . , c′q} compared to {cI , . . . , cq} in round 0.

At the end of round 1, the simulator secures another forgery σ̂′. Let I ′ be the target index for this

particular round. The forking is successful if the target index for round 1 matches the one during

round 0, i.e., I ′ = I.

2.3.2.3 Analysis

Forking, when carried out using the Rewinding Technique, is successful if the target indices during

the two rounds of simulation of the adversary match. In the Replicating Technique, on the other

hand, there is an additional requirement that the simulator’s guess of the target index has to be

correct. This leads to additional degradation. Thus, at first glance, the Rewinding Technique

seems to be the more efficient of the two approaches. The analysis concurs with this observation.

The Splitting Lemma, discussed in §2.3.1, plays a central role in establishing the lower bound. In

addition, we also use the following result.

Lemma 3 (Hölder’s inequality13). Let q ∈ Z+, 1 ≤ n < ∞ and x1, . . . , xq ≥ 0 be real numbers.

Then
q∑

k:=1

xnk ≥
1

qn−1

(
q∑

k:=1

xk

)n
.

Defining the notions of “good”. Consider a general adversary A with a non-negligible advan-

tage of ε. Let T denote the set of all random tapes participating in a single round of simulation

of the adversary–the universe of tapes. This includes the internal coins of the adversary as well as

the randomness from the random functions associated with the random oracle and the signature

oracle. Provided that the adversary has a non-negligible advantage of ε, at least ε fraction of the

tapes in T lead to a successful forgery. These constitute the good tapes in T.

the simulator has sufficient information about the critical point. Besides, the state of progress of the adversary at
this critical point–the critical state of progress–is highly likely to be one of the saved states of progress. Therefore,
in order to rewind the adversary, the simulator has to just look up for this critical state of progress and restore the
adversary to it.

13Although, the result is a corollary to a more general Hölder’s inequality (see [BPW12, Lemma C.3]), another
way to proving the bound is by viewing it an optimisation problem. Let f(x1, . . . , xq) :=

∑q
k:=1 x

n
k be the objective

function under the set of constraints: i)
∑q
k=1 xk = x, and ii) (0 ≤ xk ≤ 1) for k ∈ {1, . . . , q}. The function f attains

a minima of xn/qn−1 at the point (x/q, . . . , x/q) which completes the proof.

Chapter 2. Schnorr Signature and the Oracle Replay Attack 28

Recall, from §2.2.3, that there must exist a target H-index I for the adversary to have produced

the forgery with a non-negligible advantage. On this assumption, we define a more refined notion

of good–termed good(i)–for the tapes in T. For an arbitrary index i ∈ {1, . . . , q}, a tape in T is

deemed to be good(i) if it leads to the adversary forging successfully and with a target H-index of

i. It follows that a tape T is good is good(i) for some i. Let’s assume that εi fraction of the tapes

in T are good(i). Thus, we have

q∑
i=1

εi =

q∑
i=1

P(I = i) = P(I > 0) = ε. (2.5)

Replay attack, as already stated, involves simulating the adversary on two tapes that agree up to a

certain juncture–the target oracle query. In order to accommodate this, we split the universe T into

the two sets T(i−) and T(i+) using the Cartesian product. Here, T(i−) denotes the (sub)universe

random tapes involved in the simulation before the adversary makes the query Qi, whereas T(i+),

those after the query Qi. We assume that T is bijective to T(i−) × T(i+) through a “join” function

(denoted by ‖) and a “split” function.14 The notion of good(i), which was originally defined for

the set T, can be easily adapted for the set T(i−) × T(i+) using the bijection: a tape (Ti−, Ti+) ∈

T(i−) × T(i+) is deemed to be good(i) if its counterpart in T (i.e., Ti−‖Ti+) is good(i). We denote

the (sub)set of all such tapes in T(i−) × T(i+) by Vi.

. . //round 0

· Qi

. . //round 1

Ti−

Ti+

T′i+

Figure 2.7: Tapes involved in the replay attack.

Applying the Splitting Lemma to the Replicating Technique. The Koblitz-Menezes ver-

sion of the Splitting Lemma (Lemma 2), seems to be the more natural choice for analysing replay

attack launched using the Replicating Technique. Let’s assume that an arbitrary βi fraction of the

14The “join” function fi concatenates the two constituent tape segments from the set T(i−) × T(i+) into a single
tape in set T, i.e., fi(Ti−, Ti+) := Ti−‖Ti+. Provided that fi is bijective, the inverse of fi would be the function which
“splits” a tape T into the two constituent tape segments Ti− and Ti+ depending upon the random oracle query Qi,
i.e., f−1

i (T) := (Ti−, Ti+). Note that the definition of fi does not dependent of i and hence we consider a single join
function f.

Chapter 2. Schnorr Signature and the Oracle Replay Attack 29

tape segments in T(i−) are better(i) in the sense that is described in Lemma 2. We denote this

set by T∗(i−). The exact value of βi is determined later. Let (Ti−, Ti+) and (Ti−, T
′
i+) be the tapes

involved in the two rounds of simulation in a particular instance of the replay attack, with

Ti−
$←− T(i−) and (Ti+, T

′
i+)

$←− T(i+). (2.6)

Recall that i, here, is the simulator’s guess of the target index. The forking is successful if both

(Ti−, Ti+) and (Ti−, T
′
i+) turn out to be good(I) pairs and the guess of the target index turns out to

be correct, i.e., I = i. Let’s denote the probability of this event by ε′i. Thus, the probability with

which the forking is successful (with the tapes sampled as shown in (2.6)) is given by:

ε′i = P((Ti−, Ti+) ∈ VI ∧ (Ti−, T
′
i+) ∈ VI ∧ I = i)

= P((Ti−, Ti+) ∈ Vi ∧ (Ti−, T
′
i+) ∈ Vi | I = i) · P(I = i). (2.7)

As the index i is chosen uniformly at random from {1, . . . , q}, the probability that it matches I is

at least 1/q. As per our definition, the tape (Ti−, Ti+) is good(i) if Ti− is better(i) and Ti+ belongs

to k(Ti−). The same applies to the tape (Ti−, T
′
i+). Thus, (2.7) can be rewritten as follows:

ε′i = P(Ti− ∈ T∗(i−) ∧ Ti+ ∈ k(Ti−) ∧ T′i+ ∈ k(Ti−) | I = i) · 1/q

= P(Ti+ ∈ k(Ti−) ∧ T′i+ ∈ k(Ti−) | Ti− ∈ T∗(i−)) · P(Ti− ∈ T∗(i−)) · 1/q

= P(Ti+ ∈ k(Ti−) | Ti− ∈ T∗(i−)) · P(T′i+ ∈ k(Ti−) | Ti− ∈ T∗(i−)) · βi · 1/q

(using Proposition 1 of Lemma 2)

≥ (εi − βi)2βi/q(using Proposition 2 of Lemma 2) (2.8)

The above expression attains a maxima15 of 4ε3i /27q at the point βi = εi/3. Thus, the probability

with which the forking is successful for any i is given by

ε′ =

q∑
i=1

ε′i =

q∑
i=1

4

27q
ε3i =

4

27q

q∑
i=1

ε3i . (2.9)

15The objective function is f(βi) = (εi − βi)2βi/q under the constraint βi < εi. The function attains maximum
value at the point βi = εi/3.

Chapter 2. Schnorr Signature and the Oracle Replay Attack 30

Under the constraint given in (2.5), (2.9) attains a minima16 at the point εi = ε/q for all 1 ≤ i ≤ q

and thus, we get the lower bound

ε′ ≥ 4

27q

q∑
i=1

(ε/q)3 =
4

27
(ε/q)3. (2.10)

Applying the Splitting Lemma to the Rewinding technique. For analysing the replay

attack launched using the Rewinding Technique, we use Lemma 1. Let’s presume that an arbitrary

βi fraction of the tape pairs in T are better(i) in the sense described in Lemma 1. We denote this

set by V∗i . The exact value of βi is, again, determined later. Let T (sampled at random from

T) be the tape involved in the simulation of the adversary in round 0. If the adversary forges

successfully, the simulator can determine the target index I. We split T into the two tapes TI−

and TI+ depending on this index I. Here, TI− is the tape involved in the simulation before the

adversary makes the query QI , whereas TI+, that after the query QI . Thus, (TI−, TI+) is a good(I)

pair. The simulator, next, rewinds the adversary to the point QI and simulates it on a fresh tape

T′I+ (sampled at random from T(I+)). The replay attack is successful if (TI−, T
′
I+) also turns out to

be a good(I) pair. However, this is a necessary condition. For ease of analysis, we use the sufficient

condition that (TI−, TI+) be better and (TI−, T
′
I+) be good. Thus, the probability with which the

Rewinding Technique is successful (with the tapes sampled as described above) is given by:

ε′I = P((TI−, TI+) ∈ V∗I ∧ (TI−, T
′
I+) ∈ VI)

= P((TI−, T
′
I+) ∈ VI | (TI−, TI+) ∈ V∗I) · P((TI−, TI+) ∈ V∗I)

= (εI − βI)βI(using Proposition 1 and 2 of Lemma 1) (2.11)

16The objective function is

f(ε1, . . . , εq) =
4

27q

q∑
i=1

ε3i

under the set of constraints
∑q
i=1 εi = ε and εi ∈ [0, 1] for each i ∈ {1, . . . , q}. The function attains minimum value

at the point (ε/q, . . . , ε/q). This can also be established using Hölder’s inequality (Lemma 3).

Chapter 2. Schnorr Signature and the Oracle Replay Attack 31

The above expression attains a maxima17 of ε2I/4 at the point βI = εI/2. Thus, the probability

that the oracle replay attack is successful for any I is given by

ε′ =

q∑
I=1

ε′I ≥
q∑
I=1

ε2I
4

≥ ε2

4q
(using Hölder’s inequality) (2.12)

That concludes the analysis. It is evident that the Rewinding Technique is more efficient than

the Replicating Technique–the security degradation incurred (by the former) is just O(q) compared

to O(q3) (for the latter). Thus, it the Rewinding Technique that yields Theorem 1. Henceforth,

by forking we always refer (unless explicitly mentioned) to replay attack carried out by rewinding

the adversary.

We wrap up the discussion by introducing the notion of “characteristic” expressions and, also,

with some remarks on the analyses. In the next section, we describe how the intricacy of forking

(and also its analysis) can be separated out from the simulation of the adversary through the notion

of general forking. We also describe the nested oracle replay attack which, in simple terms, involves

two random oracles and (as the name suggests) multiple, nested, forkings.

The characteristic expression. The replay attack launched using Replicating Technique is

captured, essentially, by the expression

ε′ ≥ 4

27q

q∑
i=1

ε3i (2.13)

under the set of constraints: i)
∑q

i=1 εi = ε, and ii) (0 ≤ εi ≤ 1)i∈{1,...,q}. We say that (2.13) is the

characteristic expression for the Replicating Technique. Similarly, the characteristic expression for

the Rewinding Technique is

ε′ ≥ 1

4

q∑
i=1

ε2i (2.14)

under the same set of constraints. This abstraction comes in handy (in coming chapters) for

analysing nested replay attacks.

Remark 5. After optimisation, we arrived at two different values of βi for the Splitting Lemma:

17The objective function is f(βI) = (εI − βI)βI under the constraint βI < εI . The function attains maximum value
at the point βI = εI/2.

Chapter 2. Schnorr Signature and the Oracle Replay Attack 32

for the Replicating Technique, we used an (εi, εi/3)-Splitting Lemma, whereas, for the Rewinding

Technique, an (εi, εi/2)-Splitting Lemma.

Remark 6. We denote the universe of tapes for two rounds of simulations, associated with a

forking of the adversary, by T(1) (‘1’ in the subscript denotes one forking), i.e.,

T(1) =

q⋃
i=1

T(i−) × T2
(i+)

=

q⋃
i=1

T(i−) × T(1,i+)(using shorthand notation)

The introduction of T(1) allows us to define the “higher” notion of good(1) based on the notions of

good and good(i). The triplet of tape segments (TI−, (TI+, T
′
I+)) ∈ T(1) is considered to be good(1)

if both the tapes (TI−, TI+) and (TI−, T
′
I+) are good(I), i.e., if the forking is successful. From the

analyses, we had concluded the forking is successful with probability at least ε′. This result can

be interpreted in terms of good(1) as follows: a randomly sampled triplet from T(1) is good(1) with

probability at least ε′. These notions come into play in the analysis of modified GG-IBS in §4.3.2.

2.4 General Forking

In the previous section, we saw how the machinery of oracle replay attack was used in the security

argument of Schnorr signature scheme. However, we also saw that the probability analysis of the

security argument, which culminated with the Forking Lemma (Lemma 1), was quite involved.

Bellare and Neven [BN06] observed that

“the Forking Lemma is something purely probabilistic, not about signatures”

and proposed a more abstract version called the General Forking (GF) Lemma. The motivation is

to demarcate the probability analysis of the rewinding from that of the actual simulation, allowing

for more modular security arguments. The concept of general forking is formulated in terms of

randomised algorithms and its outputs, leaving out the notions of signature scheme as well as

random oracles altogether. Thus, the alternative modelling of the adversary (as a deterministic

Turing machine with the internal coins being passed explicitly as input.) which we had discussed

in §1.2, comes into play. The claimed advantage is to allow for more modular and easy to verify

proof of cryptographic schemes that apply the notion of forking in their security argument.

Chapter 2. Schnorr Signature and the Oracle Replay Attack 33

The modularity of the GF Lemma allows one to abstract out the probability analysis of the

rewinding process from the actual simulation in the security argument. The gap between the

abstract and the concrete is, then, bridged using the so-called “wrapper” algorithm. While the

GF Algorithm takes care of the replay attack, it is the wrapper that handles the simulation of

the protocol environment to the actual adversary. The reduction involves invoking the General

Forking Algorithm (on the associated wrapper) and utilising its outputs to solve the underlying

hard problem. So the design of the wrapper is central to any security argument involving GF

Algorithm. In fact, the design depends on the actual protocol and the security model used–see,

e.g., [BN06, BPW12] for the concrete design of the wrappers in their respective contexts.

General Forking Algorithm. Fix q ∈ Z+ and a set S such that |S| ≥ 2. Let W be a randomised

algorithm that on input a string x and elements s1, . . . , sq ∈ S returns a pair (I, σ) consisting of

an integer 0 ≤ I ≤ q and a string σ. The forking algorithm FW associated to W is defined as

Algorithm 1 below.

Algorithm 1 FW(x)

Pick coins ρ for W at random

{s01, . . . , s0q}
U←− S; (I0, σ0)←W(x, s01, . . . , s

0
q ; ρ) //round 0

if (I0 = 0) then (0,⊥,⊥)

{s1I0 , . . . , s
1
q}

U←− S; (I1, σ1)←W(x, s01, . . . , s
0
I0−1, s

1
I0
, . . . , s1q ; ρ) //round 1

if (I1 = I0 ∧ s1I0 6= s0I0) then (1, σ0, σ1)

else (0,⊥,⊥)

Role of the wrapper. Let’s take a simplistic look18 at how the GF Algorithm, together with the

wrapper W, is used to launch the oracle replay attack. The input to W comprises of some external

randomness (s1, . . . , sq) and the internal coins (ρ) for the adversary, whereas the output, an index

I. Consider the first invocation of W (on s1, . . . , sq; ρ) within the GF Algorithm: W simulates the

protocol environment to the actual adversary A having access to ρ. W responds to the random

oracle queries of A by using s1, . . . , sq. At the end of the simulation, W outputs an index I that

18For the time being, we do not consider the input string x or the side-output σ.

Chapter 2. Schnorr Signature and the Oracle Replay Attack 34

refers to the target query19.

Next, the GF Algorithm invokes W on an input (s1, . . . , sI−1, s
′
I , . . . , s

′
q; ρ) that is related to the

first invocation. The behaviour of A remains identical to the first round of simulation, right up to

the Ith random oracle query, at which point it diverges (assuming s′I 6= sI). This is tantamount

to forking A at the index I. The forking is successful, if the target index for the second round of

simulation is the same as that for the first, i.e., I ′ = I. The probability of this event is governed

by the General Forking Lemma given below. One can clearly see how the wrapper acts as an

intermediary between the abstract GF Algorithm and the adversary in the concrete setting of the

reduction.

Q0I0+1 Q0q σ0 //round 0

Q01 Q02 Q0I0

Q1I0+1 Q1q σ1 //round 1

s01

s0I0

s1I0

s0q

s1q

Figure 2.8: A successful forking of the wrapper W by FW .

The cost of forking. The GF Lemma gives us a lower bound on the probability of success of

the forking algorithm in terms of the success probability of the associated wrapper (and hence,

the underlying adversary). Roughly speaking, the cost of forking can be measured in terms of

the degradation incurred in the forking process. Let q denote the upper bound on the number of

random oracle queries, then the cost of general forking is roughly O(q).

Lemma 4 (General Forking Lemma [BN06]). Let GI be a randomised algorithm that takes no input

and returns a string. Let

gfrk := P((op = 1) : x
$←− GI ; (op, σ, σ)

$←− FW(x)) and

acc := P(I ≥ 1 : x
$←− GI ; {s1, . . . , sq}

U←− S; (I, σ)
$←−W(x, s1, . . . , sq)),

19Recall that, the random oracle query that is used by A to produce its desired output is termed the target query
and the index of this query is the target index.

Chapter 2. Schnorr Signature and the Oracle Replay Attack 35

then

gfrk ≥ acc ·
(

acc

q
− 1

|S|

)
. (2.15)

Remark 7. The analysis of the GF Algorithm is quite different from that of Rewinding Technique.

It is done through a random variable that models W as a randomised algorithm. However, the

resulting characteristic expression is the same as that for the Rewinding Technique given in (2.14).

Thus, the characteristic expression links the two approaches.

2.5 Nested Oracle Replay Attacks and Multiple Forking

So far, we have seen replay attacks involving one random oracle and a single forking of the

adversary–an elementary oracle replay attack. Boldyreva et al . [BPW12] generalised the concept of

forking, further, leading to the Multiple-Forking (MF) Lemma. The immediate motivation behind

this new abstraction was to argue the security of a proxy signature scheme that uses more than one

hash functions. The hash functions are modelled as random oracles and the MF Algorithm allows

one to mount the nested replay attacks by rewinding the adversary several times on related inputs.

In particular, a nested replay attack involves two random oracles and multiple forkings on the two

oracles. Hence, unlike elementary replay attack, there are two critical points for a round.

A (successful) nested replay attack with three forkings is illustrated in Figure 2.9. The ad-

versary is forked at the critical points Q0i , Q
0
j and Q2i (in that order20) and the forking is successful

if the target indices (of the two random oracles involved) in all the four rounds is same (see

(2.18) for the exact condition). The more abstract notion of multiple forking still retains the

modularity advantage of general forking and has been applied in several other security arguments

[GG09, CMW12, CKK13] in a more-or-less black-box fashion.

We begin with a Pointcheval-Stern-style analysis of the nested replay attack (given in Fig-

ure 2.9) and then describe the original MF Algorithm [BPW12] (but, with some notational

changes).

2.5.1 Analysis

The nested replay attack given in Figure 2.9 cannot be direct analysed using the Splitting Lemma

(at least, not at the moment: see §4.3.2). We need to extend the Splitting Lemma (Lemma 1)

20Further forkings can be carried out at Q0
j and Q4

i (in that order) and so forth.

Chapter 2. Schnorr Signature and the Oracle Replay Attack 36

. .

· Q0i

. .

· Q0j

. .

· Q2i

. .

T0j−

T0ji

T0i+

T1i+

T2ji

T2i+

T3i+

Figure 2.9: Nested replay attack with three forkings.

to suit the purpose.

2.5.1.1 The Extended Splitting Lemma

Let W, X and Y be finite sets (with some underlying probability distribution) with |W| = `, |X| = m

and |Y| = n. Also, let T denote the “universal” set W × X × Y. A triple (w, x, y) ∈W × X × Y is

deemed to be good if it satisfies a certain property. Let V denote the set of all such good triples.

Suppose that at least γ fraction of the triples in W ×X ×Y are good, i.e., P(V) ≥ γ. We define a

function k : W × X 7→ P(Y) as

k(w, x)
def
= {y ∈ Y | (w, x, y) ∈ V}.

k can be used to count, for a particular (w, x), the number of elements y ∈ Y such that (w, x, y)

forms a good triple. For some β < γ, we define the (sub)set of better triples of V as

V∗ def
= {(w, x, y) ∈ V | |k(w, x)| ≥ (γ − β)}.

Thus, a good triple (w, x, y) is better if (w, x) forms good triples with at least (γ − β) fraction of

the elements of Y. We define another function g : W 7→ P(X × Y) as

g(w)
def
= {(x, y) ∈ X × Y | (w, x, y) ∈ V∗}.

Chapter 2. Schnorr Signature and the Oracle Replay Attack 37

g can be used to count, for a particular w, the number of elements (x, y) ∈ X×Y such that (w, x, y)

forms a better triple. For some α < β, we define the best triples of V∗ as

V∗∗ def
= {(w, x, y) ∈ V∗ | |g(w)| ≥ (β − α)}.

Thus, a better triple (w, x, y) is best if (w) forms better triples with at least (β −α) fraction of the

elements of X × Y.

Lemma 5 (The Extended Splitting Lemma). The following propositions hold on the aforemen-

tioned assumptions:

1. i) P(V∗) ≥ β, i.e., at least β fraction of triples in T are better; and ii) P(V∗∗) ≥ α, i.e., at

least α fraction of triples in T are best.

2. i) P((w, x, y′) ∈ V | (w, x, y) ∈ V∗; y′ $←− Y) ≥ (γ − β), i.e., given a better triple (w, x, y),

the probability with which the triple (w, x, y′) (with y′ sampled randomly from Y) is good is

at least (γ − β); and ii) P((w, x′, y′) ∈ V∗ | (w, x, y) ∈ V∗∗;x′ $←− X; y′
$←− Y) ≥ (β − α)

(interpreted as in 2.i).

3. i) P(V∗ | V) ≥ β/γ, i.e., a good pair is better with a probability of at least β/γ; and

ii) P(V∗∗ | V∗) ≥ α/β, i.e., a better pair is best with a probability of at least β/γ; and

iii) P(V∗∗ | V) ≥ α/γ, i.e., a good pair is best with a probability of at least α/γ.

Argument. The argument is quite similar to that of the Splitting Lemma. It is not difficult to see

that Proposition 2.i and 2.ii follow from the definitions (of better and best sets, respectively).

The proof of Proposition 1.i is quite similar to that of Proposition 1 of the Splitting Lemma

(i.e., through contradiction). But it is given next for the sake of completeness. Suppose P(V) ≥ γ

and P(V∗) < β, then we have

P(V) = P(V∗) + P(V \ V∗) < β + P(V \ V∗). (2.16)

Now, there can be at most `m distinct (w, x) elements in V \ V∗. In addition, for each such

(w, x) ∈ V \ V∗, |k(w, x)| < (γ − β)n (by definition). Therefore (2.16) yields,

P(V) < β +
|k(x,w)|.`m

`mn
< β +

(γ − β)n.`m

`mn
= γ.

Chapter 2. Schnorr Signature and the Oracle Replay Attack 38

This contradicts our assumption that at least γ fraction of elements in T are good (P(V) ≥ γ),

thus, establishing the proposition. The argument for Proposition 2.ii is similar as well. Suppose

P(V∗) ≥ β and P(V∗∗) < α, then we have

P(V∗) = P(V∗∗) + P(V∗ \ V∗∗) < α+ P(V∗ \ V∗∗). (2.17)

Now, there can be at most ` distinct w elements in V∗ \V∗∗. In addition, for each such w ∈ V \V∗,

|g(w)| < (γ − β)mn (by definition). Therefore (2.17) yields,

P(V∗) < α+
|g(w)|.`
`mn

< α+
(β − α)mn.`

`mn
= β.

This contradicts our assumption (P(V∗) ≥ γ), thus, establishing Proposition 1.ii. Finally, we

turn to Proposition 3.i through 3.iii. They can be established, as in Proposition 3 of the

Splitting Lemma, using Bayes’ theorem. This concludes the argument.

2.5.1.2 Probability Analysis

Let H and G be the two random oracles involved in the nested replay attack. Nested forking, when

carried out using rewinding, is successful if the target indices (of both G and H) during all four

rounds of simulation of the adversary match. Thus, if (Jk, Ik) denote the target H and G indices,

respectively, for round k, then the success condition is:

(I3, J3) = (I2, J2) = (I1, J1) = (I0, J0) (2.18)

Defining the notions of “good”. Consider a general adversary A with the universe of tapes

denoted by T (as in §2.3.2.3). Provided that A has a non-negligible advantage of ε, at least ε

fraction of the tapes in T lead to its success (e.g ., it forging successfully). These constitute the

good tapes in T. The refined notion for good is a bit different as there are two random oracles in

consideration. Let j [resp. i] denote the target H-index [resp. G-index] (see Footnote 2). On

this assumption, for arbitrary indices (j, i) ∈ {1, . . . , q}2, a tape in T is deemed to be good(j,i) if

it leads to the adversary being successful and with a target H-index of j and a target G-index of

i. It follows that a tape T is good is good(j,i) for some (j, i) ∈ {1, . . . , q}2. Let’s assume that εj,i

Chapter 2. Schnorr Signature and the Oracle Replay Attack 39

fraction of the tapes in T are good(j,i). Thus, we have

q∑
j=1

q∑
i=1

εj,i =

q∑
j=1

q∑
i=1

P(J = j ∧ I = i) = P(J > 0 ∧ I > 0) = ε. (2.19)

To analyse forking involving two oracles, we need split the universe T into the three sets T(j−), T(ji)

and T(i+) using the Cartesian product. As usual, we assume that T is bijective to T(j−)×T(ji)×T(i+)

through a join and a split function and use this bijection to tailor the notion of good(j,i) for this

set. We denote the (sub)set of all such tapes by Vj,i.

Applying the Extended Splitting Lemma. Let’s presume that an arbitrary βj,i and αj,i

fraction of the tape triples in T are better(j,i) and best(j,i), respectively. We denote these sets,

respectively, by V∗j,i and V∗∗j,i. The exact value of βj,i and αj,i is, again, determined later. The

tapes involved are shown in Figure 2.9. The probability with which the nested replay attack is

successful is calculated as follows. Refer to Table 2.1 for notation.

Symbol Denotes

T0 (T0j−, T
0
ji, T

0
i+)

T1 (T0j−, T
0
ji, T

1
ji+)

T2 (T0j−, T
2
ji, T

2
ji+)

T3 (T0j−, T
2
ji, T

3
ji+)

Table 2.1: Shorthand for tapes.

Chapter 2. Schnorr Signature and the Oracle Replay Attack 40

ε′j,i = P(T0 ∈ V∗∗j,i ∧ T1 ∈ Vj,i ∧ T2 ∈ V∗j,i ∧ T3 ∈ Vj,i)

= P(T1 ∈ Vj,i | T0 ∈ V∗∗j,i) · P(T3 ∈ Vj,i ∧ T2 ∈ V∗j,i | T0 ∈ V∗∗j,i) · P(T0 ∈ V∗∗j,i)

≥ P(T1 ∈ Vj,i | T0 ∈ V∗j,i) · P(T3 ∈ Vj,i | T2 ∈ V∗j,i) · P(T2 ∈ V∗j,i | T0 ∈ V∗∗j,i) · αj,i

(using Proposition 1.ii)

= αj,i(βj,i − αj,i)(γj,i − βj,i)2(using Proposition 2.i and 2.ii)

The expression attains a maxima21 of ε4j,i/4
3 at the point (εj,i/4, εj,i/2, εj,i). Thus, the probability

that the nested replay attack is successful for any (j, i) is given by

ε′ =

q∑
j=1

q∑
i=1

ε′j,i ≥
q∑
j=1

q∑
i=1

ε4j,i
43

≥ ε4

43q6
(using Hölder’s inequality) (2.20)

Remark 8. The result can be extended for an arbitrary n number of forkings and we get ε′ ≥

εn+1/4nq2n.

The characteristic expression. The characteristic expression, evidently, is:

ε′ ≥ 1

4n

q∑
j=1

q∑
i=1

εn+1
ij (2.21)

under the set of constraints

q∑
j=1

q∑
i=1

εij = ε and (0 ≤ εij ≤ 1)(i,j)∈{1,...,q}2 . (2.22)

The expression attains a minima of εn+1/4nq2n at the point εij = ε/q2 for 1 ≤ i, j ≤ q, and hence

the success probability of Ω(εn+1/q2n).

21The objective function is f(βj,i, αj,i) = αj,i(βj,i−αj,i)(εj,i−βj,i)2 under the constraint (0 < αj,i < βj,i < εj,i) < 1.
The function attains maximum value at the point (εj,i/4, εj,i/2, εj,i).

Chapter 2. Schnorr Signature and the Oracle Replay Attack 41

2.5.2 Multiple Forking

The Multiple-Forking Algorithm. Fix q ∈ Z+ and a set S such that |S| ≥ 2. Let W be a

randomised algorithm that on input a string x and elements s1, . . . , sq ∈ S returns a triple (I, J, σ)

consisting of two integers 0 ≤ J < I ≤ q and a string σ. Let n ≥ 1 be an odd integer. The

multiple-forking algorithm MWn associated to W and n is defined as Algorithm 2 below.

Algorithm 2 MWn(x)

Pick coins ρ for W at random

{s01, . . . , s0q}
U←− S;

(I0, J0, σ0)←W(x, s01, . . . , s
0
q ; ρ) //round 0

if ((I0 = 0) ∨ (J0 = 0)) then (0,⊥) //Condition ¬B

{s1I0 , . . . , s
1
q}

U←− S;

(I1, J1, σ1)←W(x, s01, . . . , s
0
I0−1, s

1
I0
, . . . , s1q ; ρ) //round 1

if
(
(I1, J1) 6= (I0, J0) ∨ (s1I0 = s0I0)

)
then (0,⊥) //Condition ¬C0

k := 2

while (k < n) do

{skJ0
, . . . , skq}

U←− S;

(Ik, Jk, σk)←W(x, s01, . . . , s
0
J0−1, s

k
J0
, . . . , skq ; ρ) //round k

if
(

(Ik, Jk) 6= (I0, J0) ∨ (skJ0
= sk−1J0

)
)

then (0,⊥) //Condition ¬Dk

{sk+1
Ik

, . . . , sk+1
q } U←− S;

(Ik+1, Jk+1, σk+1)←W(x, s01, . . . , s
0
J0−1, s

k
J0
, . . . , skIk−1, s

k+1
Ik

, . . . , sk+1
q ; ρ) //round k+1

if
(

(Ik+1, Jk+1) 6= (I0, J0) ∨ (sk+1
I0

= skI0)
)

then (0,⊥) //Condition ¬Ck

k := k + 2

end while

return (1, {σ0, . . . , σn})

While the role of wrapper remains the same in the MF Algorithm, there are a few significant

Chapter 2. Schnorr Signature and the Oracle Replay Attack 42

changes in its actual structure. The wrapper now simulates two random oracles and hence its output

contains a pair of indices (I, J) with J < I. The two indices are usually associated to the target

queries made to the two random oracles involved in the replay attack. For reductions employing the

MF Algorithm, the design of the wrapper becomes a bit more involved because of the additional

index in its output. In particular, the relative “order” among the two target oracle queries must

be taken into consideration in the design of the wrapper. (We’ll later see how neglecting the order

of the indices, or even worse, using the MF Algorithm as a black-box may lead the reductions to

fail.)

The cost of multiple forkings. According to the MF Lemma (see Lemma 6), the cost of

n forkings (so the wrapper is called n + 1 times), carried out as per the specifications in Al-

gorithm 2, is roughly O(q2n), where q is the sum of the upper bound on the queries to the

random oracles involved. The degradation, in turn, can be attributed to the set of conditions

A := {B,C0, . . . ,Cn−1,C2, . . . ,Dn−1} where

B : (I0 ≥ 1) ∧ (J0 ≥ 1)

Ck : (Ik+1, Jk+1) = (Ik, Jk) ∧ (sk+1
Ik
6= skIk) (for k = 0, 2, . . . , n− 1)

Dk : (Ik, Jk) = (I0, J0) ∧ (skJ0
6= sk−1J0

) (for k = 2, 4, . . . , n− 1)

(2.23)

To be precise, the MF Algorithm is successful in the event E that all of the conditions in A0 are

satisfied, i.e.,

E : B ∧
(
C0 ∧ C2 ∧ · · · ∧ Cn−1

)
∧
(
D2 ∧D4 ∧ · · · ∧Dn−1

)
. (2.24)

The probability of this event, which is denoted by mfrk, is bounded by the MF lemma given below.

Lemma 6 (Multiple-Forking Lemma [BPW12]). Let GI be a randomised algorithm that takes no

input and returns a string. Let

mfrk := P((op = 1) : x
$←− GI ; (op, {σ0, . . . , σn})

$←− MWn(x)) and

acc := P((I ≥ 1) ∧ (J ≥ 1) : x
$←− GI ; {s1, . . . , sq}

U←− S; (I, J, σ)
$←−W(x, s1, . . . , sq))

then

mfrk ≥ acc ·
(

accn

q2n
− n

|S|

)
. (2.25)

Chapter 2. Schnorr Signature and the Oracle Replay Attack 43

The characteristic expression. The approach used for analysing the MF Algorithm is quite

similar to that used for the GF Algorithm–i.e., through random variables. However, as in the case

of General Forking/Rewinding, the characteristic expression that we end up with is the same as

for the nested replay attack (i.e., (2.21) under the set of constraints given in (2.22)).

Remark 9 (On the degradation). Note that the MF Algorithm causes a substantial amount of

degradation to the reduction. The dominant part of degradation incurred is due to the condition

(In, Jn) = (In−1, Jn−1) = · · · = (I0, J0) (2.26)

which is necessary for the success of the MF Algorithm. We call (2.26) the “core” condition for

the MF Algorithm. Each of the n equality checks in the expression (on a high level) contributes

a factor of O(q2), leading to the overall degradation of O(q2n). In Chapter 4, we will revisit the

expression with the objective of minimising the degradation on mind.

Remark 10 (Forking in terms of congruences and unknowns.). In the security argument of the

Schnorr signature (which was discussed in the previous section), forking was used, in a vague sense,

to obtain two linear congruences in two unknowns, given a linear congruence in two unknowns.

In the same vein, Multiple-Forking (for n=3) can be considered to be a mechanism to obtain four

linear congruence in four unknowns given a linear congruence in three unknowns.

Chapter 3

Galindo-Garcia IBS, Revisited

3.1 Introduction

In Africacrypt 2009, Galindo and Garcia [GG09] proposed a lightweight IBS scheme based on the

Schnorr signature scheme. The construction is simple and claimed to be the most efficient IBS till

date. The security argument consists of two reductions, B1 and B2, the choice of which is determined

by an event E. The authors construct B1 to solve the DLP when the event E occurs. Likewise, B2 is

used to solve the DLP in case the complement of E occurs. Both the reductions use the MF Lemma

(Lemma 6) to show that the DLP is reduced to breaking the IBS scheme. The authors suggest to

implement their scheme in a suitable elliptic-curve group and, after a comparative study, concluded

that the proposed construction has an overall better performance than the existing RSA-based and

pairing-based schemes.

Revisiting the security argument. Critical examination of the security argument of a crypto-

graphic construction to see whether the claimed security is indeed achieved or not is an important

topic in cryptographic research. Two such well-known examples are Shoup’s work on OAEP [Sho01]

and Galindo’s work on Boneh-Franklin IBE [Gal05]. Another important question in the area of

provable security is to obtain tighter security reduction for existing constructions. One such classical

example is Coron’s analysis of FDH [Cor00].

With this in mind, in this chapter, we revisit the security argument given in [GG09]. Our

contributions are two fold; we: i) identify several problems in the original argument, and ii) provide

a detailed new security argument that allows significantly tighter reductions. In particular, we show

that the reduction B1 in [GG09] fails in the standard security model for IBS [BNN04], while the

44

Chapter 3. Galindo-Garcia IBS, Revisited 45

reduction B2 is incomplete. Moreover, the details of the wrapper algorithms has been neglected in

both the reductions–the forking algorithms have been used in a more or less black-box manner. To

remedy these problems, we adopt a two-pronged approach. First, we sketch ways to fill the gaps

by making minimal changes to the structure of the original security argument; then, we provide a

new security argument. The new argument consists of three reductions: R1, R2 and R3, and in each

of them, solving the DLP is reduced to breaking the IBS. The reduction R1 uses the GF Lemma

(Lemma 4) and the technique first introduced by Coron [Cor00] to prove the security of FDH. We

show that this results in a significantly tighter security reduction. On the other hand, both R2 and

R3 are structurally similar to B2 but uses two different versions of the MF Lemma, together with an

algebraic technique similar to one adopted by Boneh-Boyen in [BB04a]. The security reduction R2

is also significantly tighter than the original B2. All the three reductions use the programmability

of the random oracles in a crucial way.

As the bottom-up approach–building complex systems from simpler, more primitive, systems–is

prevalent in cryptography, sound security arguments are crucial in preventing the logical fallacies

from getting carried over. Galindo-Galindo IBS (GG-IBS), due to its efficiency and simplicity, has

been used as a building block for numerous systems [RS11, XW12]. Thus, to ensure that they rest

on solid ground, it is important to give a sound argument for GG-IBS.

3.2 Revisiting the Galindo-Garcia Security Argument

We first reproduce the construction of GG-IBS and then identify several problems with the original

security argument in [GG09].

3.2.1 The Construction

The scheme is based on the Schnorr signature scheme [Sch91] discussed in the previous chapter.

The user secret key can be considered as the Schnorr signature by the PKG on the identity of the

user, using the master secret key as the signing key. Analogously, the signature on a message by a

user is the Schnorr signature, by that user, on the message using her user secret key as the signing

key. The construction is given below (for further details see [GG09, §3]).

Set-up, G(1n): Invoke the group generator GDL (on 1n) to obtain (G, g, p). Select z
U←− Zp and

set Z = gz. Return z as the master secret key msk and (G, p, g, Z,H,G) as the master public

Chapter 3. Galindo-Garcia IBS, Revisited 46

break

key mpk , where H and G are hash functions

H : {0, 1}∗ 7→ Zp and G : {0, 1}∗ 7→ Zp.

Key Extraction, E(id, msk): Select r
U←− Zp and set R := gr. Return usk := (y,R) ∈ Zp × G

as the user secret key, where

y := r + zc and c := H(R, id).

Signing, S(id,m, usk): Let usk = (y,R) and c = H(R, id). Select a
U←− Zp and set A := ga.

Return σ := (b, R,A) ∈ G × Zp ×G as the signature, where

b := a+ yd and d := G(id, A,m).

Verification, V(σ, id,m, mpk): Let σ = (b, R,A), c := H(R, id) and d := G(id, A,m). The

signature is valid if

gb = A(R · Zc)d.

Figure 3.1: The (Original) Galindo-Garcia IBS.

Remark 11. Note that, although R is a part of the secret key of a user it is actually public infor-

mation. In fact, R also forms a part of the signatures given by that user. Hence, by construction,

all signatures generated using the user secret key usk = (y,R) will contain the same R. This also

means that, in the security argument, the simulator has to maintain the same R for a particular

user; otherwise, the simulation will diverge from the actual protocol execution.

Remark 12. There are two hash functions in consideration: H and G. H is used to generate the

user secret key which, in turn, is required to sign on a message (using G). Hence H < G (< denotes

‘followed by’) constitutes the logical order for calling the hash functions.

GG-IBS in terms of Schnorr Signature. In the beginning of the section, we had given a

(vague) description of GG-IBS in terms of the Schnorr signature. Let’s elaborate on the idea. Let

{Gs,Ks,Ss,Vs} be the Schnorr signature scheme. The Key Extraction algorithm of GG-IBS can be

realised using the Schnorr Signing algorithm Ss and the hash function H. The identity of the user

Chapter 3. Galindo-Garcia IBS, Revisited 47

acts as the message, the master secret key as the signing key and, i.e.,

E(id, msk) = Ss,H(id, msk).

Similarly, if usk denotes the secret key for the user corresponding to id, the Signing algorithm of

GG-IBS is realised using Ss as shown below.

S(id,m, usk) = Ss,G(m, usk)

3.2.2 The Security Argument and Problems with it

The original security argument involves the construction of two algorithms B1 and B2 for comple-

mentary events E and NE respectively. E is the event that the attempted forgery σ̂ = (Â, b̂, R̂) is

valid, non-trivial and R̂ is contained in the response to some query to the signature oracle. The

event E (and its complement NE) is defined in this particular way in order to guarantee that the

forgeries are in a format that helps the respective reductions to solve the DLP challenge.

In reduction B2, the problem instance is embedded as a part of the master public key and hence

the master secret key is not known to B2. The extract queries are answered by using an algebraic

technique similar to the one in [BB04a]. The signature queries, on the other hand, are answered

by invoking the signing algorithm S after the user secret key has been generated as in the extract

query. Finally, B2 uses the MF Algorithm MW3 (see §2.5) to obtain four related forgeries and uses

these forgeries to solve the DLP challenge.

On the other hand, the strategy adopted in B1 is quite different from B2. The central idea

is to embed the problem instance in the randomiser R while choosing its own master keys. In

the simulation, B1 randomly chooses one of the identities involved in G-oracle query as the target

identity. For signature queries involving this target identity, B1 embeds the problem instance in R

and then uses the aforementioned algebraic technique to give the signature. The circularity involved

is resolved by programming the random oracles. If A makes an extract query on the target identity,

B1 fails; for all other identities, B1 uses the knowledge of the master secret key to respond to the

queries. Finally it hopes that A returns a forgery containing R (in which the problem instance is

embedded). In order to solve the DLP, B1 needs to obtain two such forgeries. This is accomplished

with the help of the MF Algorithm MW1.

Chapter 3. Galindo-Garcia IBS, Revisited 48

The original argument. We now reproduce the original reductions from [GG09, §4] using our

notation (for ease of reference, the bullets are replaced by numeric values). Each reduction is

followed, immediately, by the observations that cause its failure. In the following, Bi.j refers to

the jth step in the construction of Bi, i ∈ {1, 2}. The description of the forking algorithms FW

and MWn is given in §2.4 and §2.5 respectively. (Some of the “typos” in the original security

argument, that were corrected, are mentioned in the footnotes.)

Let A be an adversary against GG-IBS in the EU-ID-CMA model. Eventually, A outputs an

attempted forgery of the form σ = (A,B,R). Let E be the event that σ is a valid signature and

R was contained in an answer of the signature oracle Os. Let NE be the event that σ is a valid

signature and R was never part of an answer of Os. Galindo and Garcia construct an algorithm B1

(resp. B2) that breaks the DLP in case of event E (resp. NE).

3.2.2.1 Reduction B1

B1 takes as argument the description of a group (G, p, g) and a challenge gα with α
U←− Zp and tries

to extract the discrete logarithm α. The protocol environment is simulated as shown below.

B1.1 B1 picks î
U←− {1, . . . , qG}, where qG is the maximum number of queries that the adversary A

performs to the G-oracle. Let îd (the target identity) be the identity in the îth query to the

G-oracle. Next, B1 chooses z
U←− Zp and sets (mpk, msk) := ((G, g, p,G,H, gz), z), where G, H

are descriptions of hash functions modelled as random oracles. As usual, B1 simulates these

oracles with the help of two tables LG and LH containing the queried values along with the

answers given to A.

B1.2 Every time A queries the key extraction oracle OE , for user id, B1 chooses c, y
U←− Zp, sets

R := g−zcgy and adds 〈R, id, c〉 to the table LH. Then it returns the key (y,R) to A.

B1.3 When A makes a query to the signature oracle Os for (id,m) with id 6= îd, B1 simply

computes id’s secret key as described in the previous bullet. Then it invokes the signing

algorithm S and returns the produced signature to A.

B1.4 When A makes a query to the signature oracle Os for (id,m) with id = îd, B1 chooses

t
U←− Zp, B

U←− G, sets R := g−zc(gα)t, c := H(id, R),1 and A := B(gαgzc)−d.2 Then it returns

1In the original reduction, c was set to H(îd, gα) instead of H(îd, R). This is most likely a typo as it leads to the
signatures on îd fundamentally failing the verification.

2Here, d is not assigned a value, though from the protocol we may infer that d := G(id, A,m). But this leads to

Chapter 3. Galindo-Garcia IBS, Revisited 49

the signature (A,B,R) to A.

B1.5 B1 invokes the algorithm MW1(mpk) as described in Lemma 1 ([GG09, §4]). Here algorithm

W is simply a wrapper that takes as explicit input, the answers from the random oracles.

Then it calls A and returns its output together with two integers I, J . These integers are the

indices of A’s queries to the random oracles G, H with the target identity îd.

Algorithm 3 MW1(mpk)

Pick random coins ρ for W

s01, . . . , s
0
qG

U←− Zp

(I0, J0, σ0)←W(mpk, s01, . . . , s
0
qG

; ρ)

If (I0 = 0 ∨ J0 = 0) then return ⊥

s1I0 , . . . , s
1
qG

U←− Zp

(I1, J1, σ1)←W(mpk, s01, . . . , s
0
I0−1, s

1
I0
, . . . , s1qG , ρ)

If ((I1, J1) 6= (I0, J0) ∨ s1I0 = s0I0) then return ⊥

Otherwise return (σ0, σ1)

In this way we get two forgeries of the form σ0 = (id,m, (A,B0, R)) and σ1 = (id,m, (A,B1, R)).

Let d0 be the answer from the G-oracle given to A in the first simulation, s0I0 in MW1 and let

d1 be the second answer s1I0 . If the identity id is not equal to the target identity îd then B1

aborts. Otherwise it terminates and outputs the attempted discrete logarithm

α =
(B0 −B1)

td0 − td1
.

Observations on B1. We now note the following points about the reduction B1 given above. We

also mention ways to fix the problems.

Observation 1 (Correctness of signatures on îd). In B1.4, when A makes a signature query on

îd, B1 returns (A,B,R) ∈ G3 as the signature. However, in the protocol definition, the signatures

are elements of G×Zp×G. Therefore, the signatures on îd will fail the verification in the general

a circularity as the value of A depends on d. To avoid this circularity, B1 has to program G-oracle as follows: choose

d
U←− Zp, compute A = B(gαgzc)−d and then set G(id, A,m) := d.

Chapter 3. Galindo-Garcia IBS, Revisited 50

group setup–i.e., G is any cyclic group of prime order p, and in particular, in the elliptic curve

setting–as the operation gB is not defined in G.

What the authors could have intended in B1.4 is

• When A queries the signature oracle Os with (id,m) where id = îd, B1 chooses t, b
U←− Zp,

sets B := gb, R := g−zc(gα)t, c := H(id, R) and A := B(gαgzc)−d. Then it returns the

signature (A, b,R) to A.

Even after the above correction is applied, the signatures on îd fail the verification algorithm. For

the signatures to verify, the following equality should hold.

gb = A(R · (gα)c)d

= gb(gαgzc)−d(g−zc(gα)tgzc)d

1 = g(α+zc)(−d)gαtd

However, it holds only if

(αt− zc− α) d ≡ 0 mod p. (3.1)

It is easy to check that the LHS in (3.1) is a random element of Zp. Hence, the signatures on îd

given by B1 will fail to verify with an overwhelming probability of 1 − 1/p. The equality holds

if we set t := 1 + zc/α, instead of selecting t uniformly at random from Zp.3 However, setting

t := 1 + zc/α results in R being set to the problem instance gα, removing t from the picture

altogether. Thus, B1.4 would finally look like:

• When A queries the signature oracle Os with (id,m) where id = îd, B1 chooses b, d
U←− Zp,

sets B := gb, R := gα, c := H(id, R), A := B(gαgzc)−d and programs the random oracle in

such a way that d := G(id, A,m). Then it returns the signature (A, b,R) to A.

Although it may appear that the reduction B1 can be rescued with the modification mentioned

above, the line of argument in B1 has another inherent–much more serious–problem, which we

describe next.

Observation 2 (Ambiguity due to the choice of îd). B1 sets the identity involved in the îth G-

oracle query as the target identity îd (see B1.1). Hence, the target identity can be fixed only after

3This modification was pointed out by an anonymous reviewer.

Chapter 3. Galindo-Garcia IBS, Revisited 51

the îth query to the G-oracle has been made. However, whenever a signature query is made on

any identity, B1 has to decide whether the identity is the target identity or not. Therefore, when A

makes a signature query before the îth G-oracle query, B1 has no way to decide whether to proceed

to B1.3 or B1.4 (as it depends on whether id = îd or not).

B1 can provide a proper simulation of the protocol environment only if no signature query is made

on the target identity îd before the îth G-oracle query. However, B1 cannot really restrict the

adversarial strategy this way. In fact, B1 will fail to give a proper simulation of the protocol

environment if A makes one signature query on îd before the îth G-oracle query and one more

signature query on îd after the îth G-oracle query.

One way to fix the problem noted above is to guess the “index” of the target identity instead

of guessing the target G-index. Suppose n distinct identities are involved in the queries to the

G-oracle, where 1 ≤ n ≤ qG.4 The strategy would be to guess the index î of the target identity îd

among all the identities, i.e. if {id1, . . . , idn} were the distinct identities involved in the queries to

the G-oracle (in that order), we set id
î

with 1 ≤ î ≤ n as the target identity. Now, by assumption

no identity queried to the G-oracle prior to id
î

can be the target identity. Hence, the ambiguity

noted before can be avoided. Although this strategy works well with the “mended” reduction that

we ended up in Observation 1, it will still incur a tightness loss of the order O(q3G).

In our alternative security argument given in §3.3, we show how to get around the problem in

B1 by using Coron’s technique, together with some algebraic manipulation and non-trivial random

oracle programming. In addition to correcting the errors in B1, we end up with a much tighter

reduction as a result.

3.2.2.2 Reduction B2

It takes as argument, the description of a group (G, p, g) and a challenge gα with α
U←− Zp and

outputs the discrete logarithm α. To do so, it will run A simulating the environment as shown

below.

B2.1 At the beginning of the experiment, B2 sets the master public key mpk := (G, p, g,G, H) and

msk := (gα), where G, H are description of hash functions modelled as random oracles. As

usual, B2 simulates these oracles with the help of two tables LG and LH containing the queried

values together with the answers given to A.

4B1 will maintain a counter and increment it by 1 each time a new identity is queried to the G-oracle.

Chapter 3. Galindo-Garcia IBS, Revisited 52

B2.2 Every time A queries the key extraction oracle OE , for user id, B2 chooses c, y
U←− Zp, sets

R := g−αcgy and adds 〈R, id, c〉 to the table LH. Then it returns the key (y,R) to A.

B2.3 When A queries the signature oracle Os with (id,m), B2 simply computes id’s secret key

as described in the previous step. Then it computes a signature by calling S, adding the

respective call to the G-oracle, ((id, ga,m), d) to the table LG and gives the resulting signature

to the adversary.

B2.4 B2 invokes the algorithm MW3(mpk). In this way either B2 aborts prematurely or we get,

for some identity id, some message m and some R, four forgeries (id,m, (Ak, bk, R))5, k :=

0, . . . , 3 with A0 = A1 and A2 = A3. As all these signatures are valid, the following equations

hold.

{b0 = logA0 + (logR+ c0α)d0, b1 = logA1 + (logR+ c0α)d1,

b2 = logA2 + (logR+ c1α)d2, b3 = logA3 + (logR+ c1α)d3}
(3.2)

with c0 6= c1, d0 6= d1 and d2 6= d3. Since we know c0, c1, d0, . . . , d3, a simple computation

yields

α =
b2 + b1 − b0 − b3

c1(d2 − d3)− c0(d0 − d1)
. (3.3)

Observations on B2. We now note the following points about the reduction B2 given above. As

in B1, we discuss possible fixes.

Observation 3 (Incorrect solution of the DLP instance.). In Step B2.4, the reduction obtains the

solution of the DLP instance by solving the four equations given in (3.2). However, on substituting

the values of bks from (3.2) in (3.3) we get

b2 + b1 − b0 − b3
c1(d2 − d3)− c0(d0 − d1)

= α+ log gR · d2 + d1 − d0 − d3
c1(d2 − d3)− c0(d0 − d1)

, (3.4)

which is not the correct solution to the DLP instance.

Note that the simulator does not know the value of log gR and hence cannot extract α from the

above expression. However, it is not difficult to get the correct solution (as we show in (3.12) of

5We use bk instead of Bk, throughout the reduction, to maintain consistency with the protocol description (in
§3.2.1).

Chapter 3. Galindo-Garcia IBS, Revisited 53

§3.3.3). The more fundamental problem is that B2 fails to capture all possible adversarial strategies

as we show next.

Observation 4 (Incompleteness of B2.). In Step B2.4, B2 invokes MW3 to get four forged signatures

with bks as given in (3.2). The bk component of the forged signatures, though, need not always have

this particular structure.

The structure depends on the precise order in which A makes the target oracle queries G(id, A,m)

and H(R, id) during the simulation. (Here, (id,m) corresponds to the target identity and the

message pair in the forgery while (A,R) are components of the forged signature.) Thus, (3.2)

covers only one of the two possible adversarial behaviours: A querying the random oracles in the

logical order H < G (shown in Figure A.3 where the first branching corresponds to the forking of

the H-oracle). But one cannot rule out the complementary case of G < H: A querying the G-oracle

before the H-oracle (see Figure 3.2) where the first branching corresponds to the forking of the

G-oracle.6 Let’s look into the structure of the forged signatures in the case G < H. As a result of

Q0I0+1 Q0q σ0 = (A, b0, R0) //round 0

Q0J0+1 Q0I0

Q1I0+1 Q1q σ1 = (A, b1, R0) //round 1

Q01 Q02 Q0J0

QI1+1
2 Q2q σ2 = (A, b2, R2) //round 2

Q2J0+1 Q2I1

Q3I1+1 Q3q σ3 = (A, b3, R2) //round 3

d0

d2

c0

c1

c2

c3

Figure 3.2: Structure of the forgeries in the case G < H. Q0J0
denotes the target G-query

G(id, A,m); Q0I0 (resp Q2I0) denotes the target H-query H(R0, id) (resp H(R2, id)).

the ordering of the oracle queries, W returns J0 as the index of the G-oracle query on (id, A,m)

and I0 as the index of the H-oracle query on (R0, id), at the end of round 0. As G-oracle is forked

6This is captured by an adversary A with the following behaviour:

(a) Fix a target identity-message pair (îd, m̂) and corresponding R̂, Â ∈ G.

(b) Make the two oracle queries: G(îd, Â, m̂) and H(R̂, îd), in that order.

(c) Produce a forgery σ = (Â, B̂, R̂) on (îd, m̂).

Chapter 3. Galindo-Garcia IBS, Revisited 54

before the H-oracle, we get d1 = d0, d3 = d2 and R1 = R0, R3 = R2 in the subsequent forkings,

while all the ci, 0 ≤ i ≤ 3 will be different. On the other hand, the value A returned as part of the

forged signature remains the same in all the four rounds. Hence, the signatures returned by MW3

will contain bks of the form:

{b0 = logA+ (logR0 + c0α)d0, b1 = logA+ (logR0 + c1α)d0,

b2 = logA+ (logR2 + c2α)d2, b3 = logA+ (logR2 + c3α)d2}
(3.5)

When the signatures have the structure as in (3.5), we cannot use (3.3) (more precisely, the corrected

version as given in (A.18) of Appendix A.2.3.2) to get a solution of the DLP. This is because

d1 = d0 and d3 = d2 makes the denominator part in the corresponding expression zero. As we

cannot rule out this particular adversary, the reduction does not address all the cases, rendering it

incomplete.

To summarize, the same strategy to solve the DLP will not work for the two aforementioned

complementary cases. Still it is possible to distinguish between the two cases (H < G and G < H)

simply by looking at the structure of the forged signatures. In the case H < G, all the Rs will be

equal, i.e. R3 = R2 = R1 = R0; as for G < H, all the As will be equal, i.e. A3 = A2 = A1 = A0.

We could then use appropriate relations7 to solve for the DLP instance. However, this results in an

unnecessary forking (the branch consisting of round 2 and round 3 in Figure 3.2) being carried

out in the case G < H. We address this in §3.3 by splitting B2 into two reductions R2 and R3,

with R2 involving only a single forking. The single forking, in turn, leads to a tighter reduction

(see Table 3.1).

3.3 New Security Argument

On the basis of the observations made in the previous section, we now proceed to provide a detailed

security argument for GG-IBS. In a nutshell, we have effectively modularised the security argument

into three mutually exclusive parts so that each of the three situations mentioned in the previous

section can be studied in more detail. We also show that it is possible to obtain tighter reductions

in two of the three cases.

In order to address the problem in B1 we redefine the event E and to address the incompleteness

7i.e., (3.12) and (3.10) derived in Appendix A.2.3 and A.2.2, respectively. For the sake of completeness, we
provide the modified security argument incorporating all the above mentioned fixes in the Appendix A.1.

Chapter 3. Galindo-Garcia IBS, Revisited 55

of B2 we introduce another event F. The security argument involves constructing three algorithms:

R1, R2 and R3 and in each of them solving the DLP is reduced to breaking the IBS. R1, unlike

its counterpart B1, uses the GF Algorithm, whereas R2 and R3, the counterparts of B2, still use

the MF algorithm. The new reductions R1 and R2 are also tighter than their counterparts in the

original argument. We also use wrappers in all the three reductions.

Theorem 2. Let A be an (ε, t, qε, qs, qH, qG)-adversary against the IBS in the EU-ID-CMA model.

If the hash functions H and G are modelled as random oracles, we can construct either

(i) Algorithm R1 that (ε1, t1)-breaks the DLP, where

ε1 ≥
ε2

exp(1)qGqε
and t1 ≤ t+ 2(qε + 3qs)τ, or

(ii) Algorithm R2 that (ε2, t2)-breaks the DLP, where

ε2 ≥ ε
(

ε

(qH + qG)2
− 1

p

)
and t2 ≤ t+ 2(2qε + 3qs)τ, or

(iii) Algorithm R3 that (ε3, t3)-breaks the DLP, where

ε3 ≥ ε
(

ε3

(qH + qG)6
− 3

p

)
and t3 ≤ t+ 4(2qε + 3qs)τ.

Here qε (resp. qs) denotes the upper bound on the number of extract (resp. signature) queries that

A can make; qH (resp. qG) denotes the upper bound on the number of queries to the H-oracle (resp.

G-oracle). τ is the time taken for an exponentiation in the group G and exp is the base of natural

logarithm.

Argument. A is successful if it produces a valid forgery σ̂ = (Â, b̂, R̂) on (îd, m̂). Consider the

following event8 in the case that A is successful.

E: A makes at least one signature query on îd and R̂ was returned by the simulator as part

of the output to a signature query on îd.

The complement of this event is

8Note that the definition of the new event E (and ¬E) is slightly different from the one given in the security
argument of [GG09], i.e. event E (and NE) discussed in §3.2.2.

Chapter 3. Galindo-Garcia IBS, Revisited 56

¬E: Either A does not any make signature query on îd or R̂ was never returned by the

simulator as part of the output to a signature query on îd.

In order to come up with the forgery σ̂ with a non-negligible probability, the adversary, at some junc-

ture during its simulation, has to make the two random oracle queries: H(R̂, îd) and G(îd, Â, m̂).

Depending on the order in which A makes these calls, we further subdivide the event ¬E into an

event F and its complementary event ¬F, where

F: The event that A makes the oracle query G(îd, Â, m̂) before the oracle query H(R̂, îd)

(G < H).

¬F: The event that A makes the oracle query H(R̂, îd) before the oracle query G(îd, Â, m̂)

(H < G).

In the case of the events E, ¬E∧F and ¬E∧¬F, we give the reductions R1, R2 and R3 respectively.

They are described in the subsequent sections.

Simulating the random oracles. A random oracle query is defined to be fresh if it is the first

query involving that particular input. If a query is not fresh for an input, in order to maintain

consistency, the random oracle has to respond with the same output as in the previous query on

that input. We say that a fresh query does not require programming if the simulator can simply

return a random value as the response. The crux of most security arguments involving random

oracles, including ours, is the way the simulator answers the queries that require programming.

In our case, random oracle programming is used to resolve the circularity involved while dealing

with the implicit random oracle queries. A random oracle query is said to be implicit if it is not

an explicit query by the adversary or the simulator. As usual, to simplify the book-keeping, all

implicit random oracle queries involved in answering the extract and signature queries are put into

the account of A.

3.3.1 Reduction R1

Let ∆ := (G, p, g, gα) be the given DLP instance. The reduction involves invoking the GF Algorithm

on a wrapper Y as shown in Algorithm 4. As a result, it obtains a set of two congruences in two

unknowns and solves for α. It can be verified, as we do later, that R1 indeed returns the correct

solution to the DLP instance. The novelty in the design of Y lies in the way the problem instance is

embedded in the randomiser R instead of the master public key–R1 generates its own master keys.

Chapter 3. Galindo-Garcia IBS, Revisited 57

Algorithm 4 Reduction R1(∆)

Select z
U←− Z∗p as the msk and set mpk := (G, g, p, gz).

(op, σ0, σ1)
$←− FY((mpk, msk), gα)

if (op = 0) then ⊥ //abort1,2

Parse σi as (b̂i, ci, ri, βi, di).

if (β0 = 1) ∧ (β1 = 0) then return (z(c0d0 − c1d1) + r0d0 − (b̂0 − b̂1))
/
r1d1

else if (β0 = 0) ∧ (β1 = 1) then return (z(c1d1 − c0d0) + r1d1 − (b̂1 − b̂0))
/
r0d0

else if (β0 = 0) ∧ (β1 = 0) then return ((b̂0 − b̂1)− z(c0d0 − c1d1))
/

(r0d0 − r1d1)

else return ⊥ //abort1,3

end if

The Wrapper

The main ingredient is the so-called “partitioning strategy”, first used by Coron in the security

argument of FDH [Cor00]. The basic idea is to divide the identity-space I into two disjoint sets,

Iε and Is, depending upon the outcome of a biased coin. Y is equipped to respond to both extract

and signature queries on identities from Iε. But it fails if the adversary does an extract query on

any identity from Is; it can answer only to signature queries on identities from Is. The problem

instance is embedded in the randomiser R, depending on the outcome of the biased coin. As Y

maintains a unique R for each identity, the structure of R decides whether that identity belongs to

Iε or to Is. The optimal size of the sets is determined on analysis. The details follow.

Suppose that q := qG and S := Zp. Y takes as input the master keys (mpk, msk), the problem

instance gα and {s1, . . . , sq}. It returns a pair (I, σ) where I is the target G-index and σ is the

side-output. In order to track the index of the current G-oracle query, Y maintains a counter `,

initially set to 1. It also maintains a table LH (resp. LG) to manage the random oracle H (resp.

G). Y initiates the EU-ID-CMA game by passing mpk as the challenge master public key to the

adversary A. The queries by A are handled as per the following specifications.

(a) Random oracle query, H(R, id): LH contains tuples of the form

〈R, id, c, r, β〉 ∈ G × {0, 1}∗ × Zp × Zp ∪ {⊥} × {0, 1, φ}.

Here, (R, id) is the query to the H-oracle and c is the corresponding output. Therefore, a query

H(R, id) is fresh if there exists no tuple 〈Ri, idi, ci, ri, βi〉 in LH such that (Ri = R)∧(idi = id).

Chapter 3. Galindo-Garcia IBS, Revisited 58

If such a tuple exists, then the oracle has to return the corresponding ci as the output.

The r-field is used to store additional information related to the R-field. The tuples corre-

sponding to the explicit H-oracle queries, made by A, are tracked by storing ‘⊥’ in the r-field.

This indicates that Y does not have any additional information regarding R. In these tuples,

the β-field is irrelevant and this is indicated by storing ‘φ’. In tuples with r 6= ⊥, the β-field

indicates whether the DLP instance is embedded in R or not. If β = 0 then R = (gα)r for

some known r ∈ Zp, which is stored in the r-field. On the other hand, β = 1 implies R = gr

for some known r ∈ Zp, which is, again, stored in the r-field. We now explain how the fresh

H-oracle queries are handled. The query may be

(i) H1, Explicit query made by A: In this case Y returns c
U←− Zp as the output. 〈R, id, c,⊥, φ〉

is added to LH.

(ii) H2, Explicit query made by Y: As in the previous case, Y returns c
U←− Zp as the output.

As Y knows r = log gR, 〈R, id, c, r, 1〉 is added to LH.

(iii) H3, Implicit query by Y in order to answer a signature query made by A: See step (iii) of

Signature query on how to program the random oracle in this situation.

(b) Random oracle query, G(id, A,m): LG contains tuples of the form

〈id, A,m, d, `〉 ∈ {0, 1}∗ ×G × Zp × Zp × Z+.

Here, (id, A,m) is the query to the G-oracle and d is the corresponding output. The index of

the query is stored in the `-field. Therefore, a random oracle query G(id, A,m) is fresh if there

exists no tuple 〈idi, Ai,mi, di, `i〉, in LG such that (idi = id)∧ (Ai = A)∧ (mi = m). If such a

tuple exists, then the oracle has to return the corresponding di as the output. We now explain

how the fresh G-oracle queries are handled. The query may be

(i) G1, Explicit query made by either A or Y: In this case Y returns d := s` as the output.

〈id, A,m, d, `〉 is added to LG and ` is incremented by one.

(ii) G2, Implicit query by Y in order to answer a signature query made by A: See steps (i)

and (iii) of Signature query on how to program the random oracle in this situation.

(c) Extract query, OE(id): Y first checks if id has an associated R. This is done by searching

for tuples 〈Ri, idi, ci, ri, βi〉 in LH with (idi = id) ∧ (ri 6= ⊥). If such a tuple exists, Y checks

Chapter 3. Galindo-Garcia IBS, Revisited 59

for the value of βi in the tuple. βi = 0 implies the identity belongs to Is and consequently the

extract query fails, leading to Y aborting the simulation: abort1,1. On the other hand, βi = 1

implies that there was a prior extract query on id and also that the identity belongs to Iε. Y

generates the user secret key (same as in prior extract query) using the information available

in the tuple. On the other hand, if such a tuple does not exist, Y selects a fresh r and assigns

id to Iε. Y has this freedom since the adversary cannot forge on this identity. A more formal

description follows.

If there exists a tuple 〈Ri, idi, ci, ri, βi〉 in LH such that (idi = id) ∧ (ri 6= ⊥)

(i) If βi = 0, Y aborts the simulation (abort1,1) and returns (0,⊥,⊥).

(ii) Otherwise, βi = 1 and Y returns usk := (ri + zci, Ri) as the user secret key.

Otherwise

(iii) Y chooses r
U←− Zp, sets R := gr and queries the H-oracle for c := H(id, R). It

returns usk := (r + zc,R) as the secret key.

(d) Signature query, Os(id,m): As in Extract query, Y checks the identity for an associated

R by searching tuples 〈Ri, idi, ci, ri, βi〉 in LH with (idi = id)∧ (ri 6= ⊥). If such a tuple exists,

the identity has been assigned to either of Iε or Is, determined by the value of βi. If such a

tuple does not exist, then the identity is unassigned and Y assigns the identity to either Iε or

Is by tossing a (biased) coin β. If the outcome is 0, id is assigned to Is; else it is assigned

to Iε. Identities assigned to Is have the problem instance gα embedded in the randomiser R.

Although the private key cannot be calculated, an algebraic technique, similar to one adopted

by Boneh-Boyen in [BB04a], coupled with random oracle programming enables us to give the

signature. On the other hand, signature queries involving identities from Iε are answered by

first generating usk as in Extract query and then invoking S. A more formal description

follows.

If there exists a tuple 〈Ri, idi, ci, ri, βi〉 in LH such that (idi = id) ∧ (ri 6= ⊥)

(i) If βi = 0, Y selects s
U←− Zp and sets d := s`, A := gs(gα)−rid. It then adds

〈id, A,m, d, `〉 to LG (deferred case G2)
9 and increments ` by one. The signature

returned is σ := (A, s+ zcd,Ri).

9 In the unlikely event of there already existing a tuple 〈idi, Ai,mi, di, `i〉 in LG with (idi = id)∧(Ai = A)∧(mi =
m) but (di 6= d) then G(id, A,m) cannot be set to d. In that case Y can simply increment ` and repeat step (i).

Chapter 3. Galindo-Garcia IBS, Revisited 60

(ii) Otherwise, βi = 1 and the user secret key is usk := (y,Ri), where y = ri + zci

and Ri = gri . Y then selects a
U←− Zp, sets A := ga and queries the G-oracle with

d := G(id, A,mi). The signature returned is σ := (Ai, a+ yd,Ri).

Otherwise, Y tosses a coin β with a bias δ (i.e, Pr[β = 0]=δ). The value of δ will be

quantified on analysis.

(iii) If β = 0, Y selects c, s, r
U←− Zp and sets d := s`, R := (gα)r, A := gs(gα)−rd. Next, it

adds 〈id, (gα)r, c, r, 0〉 to LH (deferred case H3), 〈id, A,m, d, `〉 to LG (deferred case

G2) and increments ` by one.10 The signature returned is σ := (A, s+ zcid,R).

(iv) Otherwise, β = 1 and Y selects a, r
U←− Zp and sets A := ga, R := gr. It then queries

the respective oracles with c := H(R, id) and d := G(id, A,m). The signature

returned is σ := (A, a+ (r + zc)d,R).

Correctness of the signatures. For β = 1, the signatures are generated as in the protocol and

hence they fundamentally verify. For β = 0, the signature given by Y is of the form (A, b,R), where

A = gs(gα)−rd, b = s + zcd and R = (gα)r. Y also sets c := H(R, id) and d := G(id, A,m). As a

result, the signature verifies as shown below.

gb = gs+zcd

= gs−αrd+αrd+zcd

= gs(gα)−rd((gα)r(gz)c)d

= A(R(gz)c)d.

At the end of the simulation, a successful adversary forges σ̂ := (Â, b̂, R̂) on (îd, m̂). Let

〈Rj , idj , cj , rj , βj〉 be the tuple in LH that corresponds to the target H-query. Similarly, let

〈idi, Ai,mi, di, `i〉 be the tuple in LG that corresponds to the target G-query. Y returns (`i, (b̂, cj , rj , βj , di))

as its own output. Note that the side-output σ consists of (b̂, cj , rj , βj , di).

That concludes the description of the wrapper.

10Y chooses different randomisers if there is a collision as explained in Footnote 9.

Chapter 3. Galindo-Garcia IBS, Revisited 61

3.3.1.1 Correctness of the Discrete-Log.

In the event of successful forking, R1 obtains two (related) sets of side-outputs σ0 and σ1, where σi

(for i = 1, 2) is of the form (b̂i, ci, ri, βi, di). It aborts in the event that β1 = β0 = 1 (abort1,3). In

Q0I0+1 Q0q σ0 //round 0

Q01 Q02 Q0I0

Q1I0+1 Q1q σ1 //round 1

s01

s0I0

s1I0

s0q

s1q

Figure 3.3: Successful forking by R1. Q
0
I0

denotes the target query G(îd, Â, m̂).

the rest of the cases, we claim that R1 ends up with a system of two congruences in two unknowns

{â, α}. In the following discussion, let â denote log gÂ1 = log gÂ0.

(i) (β0 = 1) ∧ (β1 = 0): In this case, R̂0 = gr0 while R̂1 is of the form gr1α. As a result, we

have {b̂0 = â+ (r0 + zc0)d0, b̂1 = â+ (r1α+ zc1)d1}–a system of two congruences in the two

unknowns {â, α}. α can be solved for as shown below.

α =
z(c0d0 − c1d1) + r0d0 − (b̂0 − b̂1)

r1d1
(3.6)

(ii) (β0 = 0) ∧ (β1 = 1): In this case, R̂0 is of the form gr0α while R̂1 = gr1 . As a result, we have

{b̂0 = â+ (r0α+ zc0)d0, b̂1 = â+ (r1 + zc1)d1}. α can be solved for as shown below.

α =
z(c1d1 − c0d0) + r1d1 − (b̂1 − b̂0)

r0d0
(3.7)

(iii) (β0 = β1 = 0): In this case, R̂0 is of the form gr0α and R̂1 is also of the form gr1α. As a result,

we have {b̂0 = â+ (r0α+ zc0)d0, b̂1 = â+ (r1α+ zc1)d1}. α can be solved for as shown below.

α =
(b̂0 − b̂1)− z(c0d0 − c1d1)

(r0d0 − r1d1)
(3.8)

Notice that (3.6), (3.7) and (3.8) is precisely what R1 outputs in Algorithm 4.

Remark 13. The equations (3.6), (3.7) and (3.8) hold even if R̂1 = R̂0 (and consequently rj = ri

and cj = ci). Note that this can happen if the adversary makes the random oracle query H(R̂0, îd)

Chapter 3. Galindo-Garcia IBS, Revisited 62

before the query G(îd, Â, m̂) (H < G) in round 0. Hence, the order in which A makes the

aforementioned random oracle queries is not relevant.

3.3.1.2 Analysis

The probability analysis is governed by the three events abort1,1, abort1,2 and abort1,3. First, let’s

focus on the probability with which the wrapper Y successfully produces an output–the accepting

probability accY .

The accepting probability. Y aborts the simulation only when A does an extract query on

an identity from Is, i.e. an identity with β = 0. Therefore, Y does not abort if all the extract

queries correspond to identities from Iε, and consequently P(¬abort1,1) = (1 − δ)qε . Y accepts if

the adversary produces a valid (non-trivial) forgery at the end of a successful simulation. Therefore

accY ≥ (1− δ)qεε.

The reduction is successful in the event that neither abort1,2 and abort1,3 occurs. The first of

the aborts (abort1,2) pertains to the GF Algorithm: R1 aborts in the event that the forking ended

up being a failure. On applying the GF Lemma (Lemma 4) with acc = accY , |S| = p and q = qG,

we get the following lower bound:

P(¬abort1,2) ≥ (1− δ)qεε ·
(

(1− δ)qεε
qG

− 1

p

)
.

The probability of event abort1,3, on the other hand, is the same as that with which (βi = 1)∧(βj =

1), i.e. P(abort1,3 | ¬abort1,2) = (1− δ)2. On putting it all together, we get

ε1 = P(¬abort1,3 ∧ ¬abort1,2)

≥ (1− (1− δ)2) · (1− δ)qεε ·
(

(1− δ)qεε
qG

− 1

p

)
= (2δ − δ2) · (1− δ)qεε ·

(
(1− δ)qεε

qG

− 1

p

)
(3.9)

Assuming p� 1, (3.9) attains maximum value at the point δ =
(

1−
√
qε/(qε + 1)

)
, at which

ε1 ≥
ε2

exp(1)qGqε
.

Here, exp is the base of natural logarithm.

Chapter 3. Galindo-Garcia IBS, Revisited 63

Remark 14. The above reduction is tighter than the original reduction B1 given in [GG09]. This

can be attributed to two reasons: i) R1 uses the GF Algorithm FW instead of the MF Algorithm

MW1; and ii) B1 in [GG09] randomly chooses one of the identities involved in the G-oracle query

as the target identity (refer to §3.2.2.1) which contributes a factor of q2G to the degradation in B1.

By contrast, we apply Coron’s technique in R1 to partition the identity space in an optimal way.

Time complexity. If τ is the time taken for an exponentiation in G, then the time taken by R1

is t1 ≤ t + 2(qε + 3qs)τ . It takes at most one exponentiation for answering the extract query and

three exponentiations for answering the signature query. This contributes the (qε + 3qs)τ factor in

the running time. The factor of two comes from the forking algorithm, since it involves running

the adversary twice.

3.3.2 Reduction R2

Let ∆ := (G, p, g, gα) be the given DLP instance. The reduction involves invoking the MF Algo-

rithm on the wrapper W as shown in Algorithm 5. As a result, it obtains a set of two congruences

in two unknowns and solves for α. It can be verified that R2 indeed returns the correct solution to

the DLP instance. The design of the wrapper W follows.

Algorithm 5 Reduction R2(∆)

Set mpk := ∆

(op, {σ0, σ1})
$←− MW1(mpk)

if (op = 0) then 0

Parse σi as (b̂i, ci, di); let d denote d1 = d0

return (b̂0 − b̂1)
/

(d0(c0 − c1))

The Wrapper

Suppose that q := qH+qG and S := Zp. W takes as input the master public key mpk and {s1, . . . , sq}.

It returns a triple (I, J, σ) where J (resp. I) is the target H-index (resp. G-index) and σ is the

side-output. In order to track the index of the current random oracle query, W maintains a counter

`, initially set to 1. It also maintains a table LH (resp. LG) to manage the random oracle H (resp.

G). W initiates the EU-ID-CMA game by passing mpk as the challenge master public key to the

adversary A. The queries by A are handled as per the following specifications.

Chapter 3. Galindo-Garcia IBS, Revisited 64

(a) Random oracle query, H(R, id): LH contains tuples of the form

〈R, id, c, `, y〉 ∈ G × {0, 1}∗ × Zp × Z+ × Zp ∪ {⊥}.

Here, (R, id) is the query to the H-oracle with c being the corresponding output. The index

of the query is stored in the `-field. Finally, the y-field stores either (a component of) the

secret key for id, or a ‘⊥’ in case the field is invalid. H(R, id) is fresh if there exists no tuple

〈Ri, idi, ci, `i, yi〉 in LH such that (Ri = R)∧ (idi = id). If such a tuple exists, then the oracle

has to return ci as the output. A fresh, explicit, H-oracle query is handled as follows: i) return

c := s` as the output, and ii) add 〈R, id, c, `,⊥〉 to LH and increment ` by one.

(b) Random oracle query, G(id, A,m): LG contains tuples of the form

〈id, A,m, d, `〉 ∈ {0, 1}∗ ×G × {0, 1}∗ × Zp × Z+.

Here, (id, A,m) is the query to the G-oracle with d being the corresponding output. The index

of the query is stored in the `-field. Therefore, a random oracle query G(id, A,m) is fresh if

there exists no tuple 〈idi, Ai,mi, di〉, in LG such that (idi = id) ∧ (Ai = A) ∧ (mi = m). If

such a tuple exists, then the oracle has to return di as the output. A fresh, explicit, G-oracle

query is handled as follows: i) return d := s` as the output, and ii) add 〈id, A,m, d, `〉 to LG

and increment ` by one.

(c) Extract query, OE(id): Since the master secret key α is unknown to W, it has to carefully

program the H-oracle in order to generate the user secret key usk.

(i) If there exists a tuple 〈Ri, idi, ci, `i, yi〉 in LH such that (idi = id) ∧ (yi 6= ⊥), W returns

usk := (yi, Ri) as the secret key.

(ii) Otherwise, W chooses y
U←− Zp, sets c := s` andR := (gα)−cgy. It then adds 〈R, id, c, `, y〉11

to LH and increments ` by one (an implicit H-oracle query). Finally, it returns usk :=

(y,R) as the secret key.

(d) Signature query, Os(id,m): The signature queries are answered by first generating usk (by

querying with OE on id), followed by invoking S.

11In the unlikely event of there already existing a tuple 〈Ri, idi, ci, `i,⊥〉 in LH with (Ri = R)∧(idi = id)∧(ci = c),
W will simply increment ` and repeat step (ii).

Chapter 3. Galindo-Garcia IBS, Revisited 65

(i) If there exists a tuple 〈Ri, idi, ci, `i, yi〉 in LH such that (idi = id) ∧ (yi 6= ⊥), then

usk = (yi, Ri). W now uses the knowledge of usk to run S and returns the signature.

(ii) Otherwise, W generates usk as in step (ii) of Extract query and runs S to return the

signature.

At the end of the simulation, a successful adversary outputs a valid forgery σ̂ := (Â, b̂, R̂)

on a (îd, m̂). Let 〈idj , Rj , cj , `j , yj〉 be the tuple in LH that corresponds to the target H-query.

Similarly, let 〈mi, Ai, ci, di, `i〉 be the tuple in LG that corresponds to the target G-query. W returns

(`i, `j , (b̂, cj , di)) as its own output. Note that the side-output σ consists of (b̂, cj , di).

Structure of the forgery. Recall that the signature queries are answered by doing an extract

query on the identity followed by calling S. Therefore, the resultant secret keys are of the form

usk = (y,R), where R = (gα)−cgy and we have r = −αc + y. If a forgery is produced using

the same R as given by R2 as part of the signature query on id, then b will be of the form

b = a+ (−αc+ y+αc)d = a+ yd. Therefore, it will not contain the solution to the DLP challenge

α, and such forgeries are of no use to R2. But the event ¬E guarantees that A does not forge using

an R which was given as part of the signature query on id and hence, for the forgery to be valid b

will necessarily be of the form b = a+ (r + αc)d.

3.3.2.1 Correctness of the Discrete-Log.

In the event of successful forking, R2 obtains two (related) sets of side-outputs {σ0, σ1}, where σi

(for i = 0, 1) is of the form (b̂i, ci, di). Let â denote log gÂ1 = log gÂ0; let r̂ denote log gR̂1 =

Q0I0+1 Q0q σ0 //round 0

Q01 Q02 Q0J0
Q0J0+1 Q0I0

Q1I0+1 Q1q σ1 //round 1

s01 s0J0

s0I0

s1I0

s0q

s1q

Figure 3.4: Successful forking by R2. Q
0
J0

denotes the target G-query G(îd, Â, m̂) while Q0I0 denotes

the target H-query H(R̂, îd).

log gR̂0; and let d denote d1 = d0. Since the multiple-forking was successful, we have: {b̂0 =

Chapter 3. Galindo-Garcia IBS, Revisited 66

â+ (r̂ + αc0)d, b̂1 = â+ (r̂ + αc1)d}–a system of two congruences in the two (effective) unknowns

{â+ r̂d, α}. α can be solved for by using the expression given below.

α := (b̂0 − b̂1)
/

(d(c0 − c1)) (3.10)

Notice that (3.10) is precisely what R2 outputs in Algorithm 5.

3.3.2.2 Analysis

Since there is no abort involved in the simulation of the protocol, we may conclude that the accepting

probability of W is the same as the advantage of the adversary, i.e. accW = ε. The probability

of success of the reduction R2 is computed by using MF Lemma (Lemma 6) with q := qH + qG,

|S| := p and n = 1.12 Hence, we get ε2 = O(ε2/(qH + qG)2).

Time complexity. Drawing analogy from the analysis of time complexity of R1, the time taken

by R2 is easily seen to be bounded by t2 ≤ t+ 2(2qε + 3qs)τ .

Remark 15. R2 is similar in some aspects to the (incomplete) reduction B2 in [GG09]. However, a

major difference is that R2 uses the MF Algorithm MW1 instead of MW3 to solve the DLP challenge.

Therefore, only one forking is involved leading to a much tighter reduction than B2.

3.3.3 Reduction R3

Let ∆ := (G, p, g, gα) be the given DLP instance. As in R2, the reduction involves invoking the

MF Algorithm on the wrapper W. The only difference is that MF Algorithm is run for n = 3. As

a result, it obtains a set of four congruences in four unknowns and solves for α. It can be verified

that R3 indeed returns the correct solution to the DLP instance.

12 In the analysis of B2 in [GG09], q was assumed to be qH · qG. However, q actually denotes the size of the set
of responses to the random oracle queries involved in the replay attack. As both H and G-oracle is involved in the
replay attack in B2, the size of the set is qH + qG rather than qH · qG.

Chapter 3. Galindo-Garcia IBS, Revisited 67

Algorithm 6 Reduction R3(∆)

Set mpk := ∆

(op, {σ0, σ1, σ2, σ3})
$←− MW3(mpk)

if (op = 0) then 0

Parse σi as (b̂i, ci, di).

return
(
(b̂0 − b̂1)(d2 − d3)− (b̂2 − b̂3)(d0 − d1)

)/
(c0 − c1)(d0 − d1)(d2 − d3)

3.3.3.1 Correctness of the discrete-log.

In the event of successful forking, R3 obtains four (related) sets of side-outputs {σ0, σ1, σ2, σ3},

where σi (for i = 0, . . . , 3) is of the form (b̂i, ci, di). Let â0 (resp. â2) denote log gÂ1 = log gÂ0

Q0I0+1 Q0q σ0 //round 0

Q0J0+1 Q0I0

Q1I0+1 Q1q σ1 //round 1

Q01 Q02 Q0J0

Q2I0+1 Q2q σ2 //round 2

Q2J0+1 Q2I0

Q3I0+1 Q3q σ3 //round 3

s01

s0J0

s2J0

s0I0

s1I0

s0q

s1q

s2I0

s3I0

s2q

s3q

Figure 3.5: Successful multiple forkings by R3. Q
0
J0

denotes the target H-query H(R̂, îd); Q0I0 (resp

Q2I0) denotes the target G-query G(îd, Â0, m̂) (resp G(îd, Â2, m̂)).

(resp. log gÂ2 = log gÂ3); let r̂ denote log gR̂3 = log gR̂2 = log gR̂1 = log gR̂0. Since the multiple

forkings were successful, we have:

{b̂0 = â0 + (r̂+ αc0)d0, b̂1 = â0 + (r̂+ αc0)d1, b̂2 = â2 + (r̂+ αc2)d2, b̂3 = â2 + (r̂+ αc2)d3} (3.11)

We claim that (3.11) forms a system of four congruences in the four unknowns {r̂, â0, â2, α}. α can

be solved for by using the expression given below.

α =
(b̂0 − b̂1)(d2 − d3)− (b̂2 − b̂3)(d0 − d1)

(c0 − c1)(d0 − d1)(d2 − d3)
(3.12)

Chapter 3. Galindo-Garcia IBS, Revisited 68

Notice that (3.12) is precisely what R3 outputs in Algorithm 6.

3.3.3.2 Analysis

Since there is no abort involved in the simulation of the protocol, we may conclude that the accepting

probability of W is the same as the advantage of the adversary, i.e. accW = ε. The probability

of success of the reduction R3 is computed by using MF Lemma (Lemma 6) with q := qH + qG,

|S| := p and n = 3. Hence, we have ε3 = O(ε4/(qH + qG)6).

3.3.4 A Comparison with the Original Reduction.

Recall that we replaced the reduction B1 in the original security argument with the new reduction

R1. Likewise, B2 was replaced with the two reductions R2 and R3. The resulting effect on tightness

is tabulated below. The security degradation involved in original B1 is of the order O(q3G). In

comparison, R1 incurs a degradation of order O(qGqε) which is much lower than that of B1. Note

that qG � qε, i.e. the bound on the number of random oracle queries is much greater than the bound

on the number of extract queries. For example, for 80-bit security one usually assumes qG ≈ 260

while qε ≈ 230. The degradation involved in the original B2 would be of the order of O((qG + qH)6)

(as pointed out in Footnote 12). In comparison, the security degradation involved in R2 and R3

is of order O((qH + qG)2) and O((qH + qG)6) respectively. Thus, the effective degradation13 is still

of the order O((qH + qG)6).

Original reductions [GG09] B1 B2

Degradation O(q3G) O((qGqH)6)

Our new reductions R1 R2 R3

Degradation O(qGqε) O((qH + qG)2) O((qH + qG)6)

Table 3.1: A comparison of degradation in the original [GG09] and the new security argument.

13The effective degradation of a security argument involving multiple reductions from the same hard problem (as
in the case of GG-IBS) is equal to the degradation of the reduction that incurs the worst security degradation.

Chapter 4

Galindo-Garcia IBS, Improved

4.1 Introduction

Even though we had managed to fix the security argument for GG-IBS in the previous chapter,

the security bound that we ended up with in Theorem 2 is still quite loose. The loss of tightness

is inherited from the MF Algorithm (Algorithm 2) which is used to launch nested replay attack

on the GG-IBS adversary. To be precise, the use of MW3 in reduction R3 leads to an effective

degradation of O(q6) (where q denotes qH + qG). In this chapter, we contemplate a better security

bound for GG-IBS. To that end, we introduce two notions pertaining to simulation of random

oracles: “dependency” and “independency”. The notion of independency follows naturally for

GG-IBS; dependency, on the other hand, has to be induced by modifying the construction (to be

precise, the hash functions H and G) of the protocol in a clever manner. It turns out that the two

notions can be applied in conjunction and this leads to the nested replay attack being launched

far more effectively than specified in the MF Algorithm. As a result, the effective degradation is

reduced to O(q3). The non-trivial aspect is to leverage these two notions in the security argument.

In the previous chapter, we had concluded that the security bound for GG-IBS is quite loose.

The loss of tightness of O(q6) (where q denotes qH + qG) is inherited, primarily, from the MF

Algorithm MW3 which is used for launching a nested oracle replay attack on the GG-IBS adversary

in reduction R3. In this chapter, we address the question of whether the nested oracle replay attack

can be launched more effectively than specified in the MF Algorithm. To that end, we exploit the

notions of “dependency” and “independency”–(in)dependency, in conjunction–among the target

indices of the two random oracles H and G. The notion of independency follows naturally for

GG-IBS; dependency, on the other hand, has to be induced by modifying the construction (to be

69

Chapter 4. Galindo-Garcia IBS, Improved 70

precise, the hash functions H and G) of the protocol in a clever manner. The non-trivial aspect is

to leverage these two notions in the security argument.

4.2 Degradation: A Closer Look

Let’s return to the primary source of degradation for GG-IBS: reduction R3. For i = {0, . . . , 3}, let

Ji (resp. Ii) denote the target H-index (resp. G-index) for round i of simulation. (see Figure 4.1).

The condition for the success of the forkings can be derived from (2.23) to be E : B ∧C0 ∧C2 ∧D2,

Q0I0+1 Q0q σ0 //round 0

Q0J0+1 Q0I0

Q1I0+1 Q1q σ1 //round 1

Q01 Q02 Q0J0

Q2I0+1 Q2q σ2 //round 2

Q2J0+1 Q2I0

Q3I0+1 Q3q σ3 //round 3

s01

s0J0

s2J0

s0I0

s1I0

s0q

s1q

s2I0

s3I0

s2q

s3q

Figure 4.1: Successful Multiple-Forking for R3. Q0J0
denotes the target H-query H(R̂, îd) for

round 0; Q0I0 (resp Q2I0) denotes the target G-query G(îd, Â0, m̂) (resp G(îd, Â1, m̂)) for round 0

(resp round 2).

with the core condition of

(I3, J3) = (I2, J2) = (I1, J1) = (I0, J0). (4.1)

Each of the equality checks, loosely speaking, contributes to a factor of O(q2) leading to the overall

degradation of O(q6). Our objective of bringing down the overall degradation relies on relaxing the

core condition. This, in turn, is owed to the following observations.

Observation 5 (Independency of I2 and I0). It is not necessary for the target indices of the H

oracle to be the same in round 0 and round 2 (i.e., I2 needn’t match I0).

Chapter 4. Galindo-Garcia IBS, Improved 71

In order to see this, let’s return to the system of congruences in (3.11), i.e.,

{b̂0 = â0 + (r̂ + αc0)d0, b̂1 = â0 + (r̂ + αc0)d1, b̂2 = â2 + (r̂ + αc2)d2, b̂3 = â2 + (r̂ + αc2)d3} (4.2)

What we have is a system of four congruences in the four unknowns {r̂, â0, â2, α} with α being

the solution to the DLP. From the structure of the hash function H, it follows that the index I

corresponds to the unknown â. The process of solving for α starts by eliminating the unknown

â0 (resp. â2) from {b̂0, b̂1} (resp. {b̂2, b̂3}). What is necessary at this point is that the I indices

must match for round 0 and round 1 (resp. round 2 and round 3). However, eliminating â0

from {b̂0, b̂1} is not affected by the pair {b̂2, b̂3} and vice versa. Hence, from the point of view

of the reduction, it doesn’t make any difference whether we relax the condition to accommodate

independency–the system of congruences one ends up with is exactly the same as in (4.2). In

fact, the reduction is unlikely to achieve anything by restricting the indices. Thus, incorporating

independency simplifies the condition in (4.1) to

(I3, J3) = (I2, J2) ∧ (I1, J1) = (I0, J0) ∧ (J2 = J0). (4.3)

Remark 16. The notion of independency can be better appreciated if we visualise the process

of multiple-forking in terms of congruences and unknowns. At a high level, what the reduction

algorithm R3 secures from the MF Algorithm is a set of four congruences in four unknowns. One of

these unknowns is the solution to the DLP. The MF Algorithm needs to ensure that the congruences

are linearly independent of each other with a certain non-negligible probability. Observation 5

can then be restated as: even if the condition on the I indices is relaxed, we still end up with a

system of four congruences in four unknowns.

Observation 6 (Dependency between H and G). It is possible to modify GG-IBS, the structure of

the hash function G to be precise, such that I1 = I0 implies J1 = J0 (and similarly I3 = I2 implies

J3 = J2) with a non-negligible probability.

Recall that the hash functions in the construction of GG-IBS are of the form H(id, R) and

G(id, A,m). Suppose that we modify the structure of G to G(id, A,m, c) where c := H(id, R).

Let’s consider round 1 of simulation for the “modified” GG-IBS initiated by a forking at I0 as in

reduction R3. Suppose that the adversary is successful and, in addition, the target H-index for the

round 1 matches with that in round 0 (i.e., I1 = I0). We claim: due to the binding between the

Chapter 4. Galindo-Garcia IBS, Improved 72

Q0I0+1 Q0q round 0

Q01 Q02 Q0J0
Q0J0+1 Q0I0

Q1I0+1 Q1q round 1

s01 s0J0

s0I0

s1I0

s0q

s1q

Figure 4.2: Oracle replay attack after setting up dependency between the hash functions. Q0J0

denotes the target H-query H(x̂) while Q0I0 corresponds to the target G(ŷ, ĉ) where ĉ = H(x̂).

hash functions that we have introduced, the target G-indices for the two rounds also have to match.

The advantage with which an adversary can forge a signature having violated this condition is, in

fact, negligible (see Claim 2.1). Hence, (I1 = I0) implies (J1 = J0). We say that the random

oracle G is “dependent” on the random oracle H (denoted by H ≺ G) over these two rounds1. The

property holds for round 2 and round 3 as well (i.e. (I3 = I2) implies (J3 = J2)). As a result, the

condition in (4.3) is further simplified to

(I3 = I2) ∧ (I1 = I0) ∧ (J2 = J0). (4.4)

The introduction of binding, in fact, brings more to the table. In a particular round of simulation,

to forge a signature, an adversary (except with a negligible probability of guessing) has to make

the target random oracle queries in the order H < G (see Claim 2.1). For example, it follows in

round 0 that (1 ≤ J0 < I0 ≤ q). Thus, as a result of the binding, the logical order is imposed on

the adversary. That brings us to the formal definition of the notion of random-oracle dependency.

Definition 14 (Random-Oracle Dependency). Consider the oracle replay attack in the context of

a cryptographic protocol that employs two hash functions H1 and H2 modelled as random oracles.

Let J (resp. I) denote the target H1-index (resp. H2-index) for the first round of simulation of the

protocol. Also, let J ′ (resp. I ′) denote the target H1-index (resp. H2-index) for the second round of

simulation that was initiated by a forking at I. Suppose that the adversary was successful in both

the rounds. The random oracle H2 is defined to be η-dependent on the random oracle H1 on the

target query (denoted by H1 ≺ H2) if the following criteria are satisfied: i) (1 ≤ J < I ≤ q) or, in

1Intuitively, if a protocol uses two hash functions H1 and H2 in such a way that the input to H2 is a function of
the output of H1, then we say that the H2-call is dependent on the H1-call. This is possible only when there is an
inherent order, a hierarchy, among the hash functions used in the construction of the protocol.

Chapter 4. Galindo-Garcia IBS, Improved 73

other words H1 < H2; and ii) P((J ′ 6= J) | (I ′ = I)) ≤ η.

Inducing dependency. Let’s return to the random oracles in Definition 14. A natural way to

set up the dependency H1 ≺ H2 is by redefining the random oracle H2 as a function

H2 : D2 × R1 7→ R2,

where the second input to the oracle H2 is chosen as the output of the H1-oracle for an appropriate

input. The trick is to choose the appropriate input. This, in turn, will require changes in the

protocol, to be precise, changes in the hash functions corresponding to the random oracles.

The second criterion, in other words, requires I ′ = I =⇒ J ′ = J with probability at least

(1−η); for the criterion to hold with overwhelming probability, η should be negligible in n. A little

more specifically, H2 is said to be fully-dependent on H1 if η = 0, i.e. (I ′ = I) =⇒ (J ′ = J). But

for most applications, it suffices that J be η-dependent on I for some η which is negligible.

Although dependency forces an order among the hash functions, the reverse may not be true–a

logical order among the hash functions in the protocol does not necessarily translate into de-

pendency between them. Hence, one may need to impose explicit dependency among the hash

functions. A natural way to induce the dependency H1 ≺ H2 is by making the input to H2 a

function of H1’s output (like the binding we introduced for GG-IBS).

Next, we formally argue that the binding in GG-IBS does indeed translate into a dependency

between the random oracles (see Figure 4.3 for a detailed construction).

Claim 2.1 (Dependency for modified GG-IBS). The random-oracle dependency of H ≺ G with

η := q(q − 1)/p applies to the modified GG-IBS.

Argument. Consider an adversary A against the modified GG-IBS. Let’s suppose that it produces

a valid, non-trivial forgery σ̂ = (b̂, R̂, Â) on (îd, m̂) at the end of one round of simulation. Let

J (resp. I) denote the index of the target H-query H(îd, R̂) (resp. G-query G(m̂, Â, c), where

c := H(îd, R̂)) for the round. By using an argument à la that in Footnote 2, it can be established

that 0 < I, J ≤ q. Now, there are two possibilities: H < G and G < H. Let’s look at the second of

the cases. Since G takes c as an input, G < H is plausible only if A correctly anticipates the value

of c. Thus, for A to have a non-negligible advantage, it has to make the two target queries and in

the order H < G. Simply put, the random oracles satisfy the first criterion.

Next, we simulate A again after forking at I. Let (I ′, J ′) be the target indices for this round. In

Chapter 4. Galindo-Garcia IBS, Improved 74

order to establish that the random oracles satisfy the second criterion, let’s assume the contrary:

I ′ = I but J ′ 6= J . Since I ′ = I, A has to forge a signature σ̂′ = (b̂′, R̂′, Â) on (îd
′
, m̂) such that

H(îd
′
, R̂′) = c. This, in turn, is tantamount to a collision of the random function corresponding to

H and, as per the birthday bound, the probability of this event is q(q − 1)/p. Moreover, provided

that q � p the value is negligible2. By implication, the second criterion is also satisfied.

More generally:

Claim 2.2 (Binding induces dependency). Consider the hash functions (and the corresponding

random oracles) described in Definition 2.1. Let q1 denote the upper bound on the number of

queries to the random oracle H1. In addition, let R1 denote the range of H1. Binding H2 to H1 (by

making the input to H2 a function of H1’s output) induces a random-oracle dependency H1 ≺ H2

with ηb := q1(q1 − 1)/|R1|.

Argument. The line of argument is the same as in Claim 2.1.

Remark 17. Assuming q1 to be polynomial and |R1| to be exponential in n, the value of ηb is

asymptotically negligible. Now, let’s consider a concrete setting, say 80-bit security level. Assuming

typical values of q1 := 260 and |R1| := 280, the value can no longer be ignored. However, if we take

into consideration the degradation in Theorem 3, we end up choosing |R1| := 2260 rendering ηb

negligible. Hence, we can safely assume full-dependency in subsequent discussions.

The consequences of (in)dependency. In a nutshell, our observations affect the security of

GG-IBS in the following ways.

(i) We saw that, once (in)dependency is taken into consideration, the condition for success of the

multiple forkings is simplified to (4.4). Intuitively, this would bring down the degradation to

O(q3).

(ii) The incompleteness of B2 stems from the fact that the simulator cannot really restrict the

order in which the adversary makes the two target random oracle queries. In the previous

chapter, the issue was fixed using the two-reduction strategy. By imposing the logical order

H < G through dependency, we can do away with the events F and ¬F and hence the

reduction R2. This leads to a simpler event structure.

2To be precise, q is polynomial in n whereas 1/p is a negligible function in n. Plus, the product of a polynomial
and a non-negligible function is still non-negligible.

Chapter 4. Galindo-Garcia IBS, Improved 75

As we will see in the next section, we end up with a cleaner, tighter security argument for GG-IBS.

4.3 Galindo-Garcia IBS, Improved

We begin by describing, in detail, the GG-IBS scheme in which the binding required to induce the

dependency H ≺ G has been set up.3 The construction is same as in Figure 3.1 save for the

structure of the hash function G, which is now a function of c := H(id, R) (boxed in Figure 4.3).

The binding that we have introduced is more refined4 than the one suggested in Observation 6.

Set-up, G(1n): Invoke the group generator GDL (on 1n) to obtain (G, g, p). Select z
U←− Zp and

set Z = gz. Return z as the master secret key msk and (G, p, g, Z,H,G) as the master public

key mpk , where H and G are hash functions

H : {0, 1}∗ ×G 7→ Zp and G : {0, 1}∗ ×G × Zp 7→ Zp.

Key Extraction, E(id, msk): Select r
U←− Zp and set R := gr. Return usk := (y,R) ∈ Zp × G

as the user secret key, where

y := r + zc and c := H(id, R).

Signing, S(id,m, usk): Let usk = (y,R) and c = H(id, R). Select a
U←− Zp and set A := ga.

Return σ := (b, R,A) ∈ G × Zp ×G as the signature, where

b := a+ yd and d := G(m,A, c) .

Verification, V(σ, id,m, mpk): Let σ = (b, R,A), c := H(id, R) and d := G(m,A, c) . The

signature is valid if

gb = A(R · Zc)d.

3A noteworthy observation is that, setting up the random-oracle dependency G ≺ H in GG-IBS allows more
efficient reductions to DLP. However, this disturbs the “logical” order of the random oracles from the protocol’s
perspective. In such a protocol, the PKG will have to issue private keys for each message to be signed, rendering it
impractical.

4Recall that the suggestion in Observation 6 was to set d := G(id, A,m, c) where c := H(R, id). However, id
is redundant here as it is anyways captured indirectly by c.

Chapter 4. Galindo-Garcia IBS, Improved 76

break
Figure 4.3: Galindo-Garcia IBS with binding.

4.3.1 Security Argument

Once the binding is in place, the adversary is bound to make the target queries in the logical order

(except with a negligible probability, see Claim 2.1). This simplifies the event structure of the

security argument to quite an extent and, accordingly, it consists of only two reductions R′1 and R′3.

Theorem 3. Let A be an (ε, qε, qH, qG)-adversary against GG-IBS in the EU-ID-CMA model. If the

hash functions H and G are modelled as random oracles, we can construct either

(i) Algorithm R′1 that ε2/(2 exp(1)qGqε)-breaks the DLP, or

(ii) Algorithm R′3 that ε4/64(qH + qG)3-breaks the DLP.

Here qε denotes the upper bound on the number of extract queries that A can make; qH (resp. qG)

denotes the upper bound on the number of queries to the H-oracle (resp. G-oracle). exp is the

base of natural logarithm. (Plus, for simplicity, we have assumed both 1/p and q(q − 1)/p to be

negligible).

Argument. Recall the events E and ¬E that were defined in the security argument of GG-IBS.

In the case of the event E (resp. ¬E) we give a reduction R′1 (resp. R′3) to the DLP. R′1 can be

regarded to be a simplified version of the reduction R1 confined to handling the order H < G (recall

that R1 is equipped to handle both the orders). As the gist of the reduction R′1 is the same as in

R1 given in §3.3.3, we relegate it to Appendix A.3. As for R′3, the simulation of one round of

the adversary, as well as the manner in which it is forked is the same as plotted in R3. However,

we use the Rewinding Technique (see §2.3.2.2 and §2.5) instead of the MF Algorithm, as shown

in Figure 4.4. The novelty lies in exploiting (in)dependency for the fruition of a better security

bound. Hence, we focus on the probability analysis.

4.3.2 Analysis

The aim is to avoid the use of Extended Splitting Lemma in the analysis. This requires two iterations

of the Splitting Lemma (Lemma 1) on different, but correlated, underlying sets. Consequently,

we have two base notions of “good”: good and good(1). In addition, we have a higher notion of

good(3) which we, ultimately, intend to bound.

Chapter 4. Galindo-Garcia IBS, Improved 77

Conventions. We stick to the conventions followed in the analysis of elementary oracle replay

attack in §2.3.2.3. T denotes the universe of random tapes participating in a single round of

simulation of the adversary. This includes the internal coins of the adversary as well as the ran-

domness from the random functions associated to the two random oracles, the signature oracle and

the extract oracle. T(1) denotes the universe of random tapes involved in two rounds of simulation

resulting from the forking of the G-oracle. Thus, T(1) is defined as

T(1) =

q⋃
i=2

T(i−) × T2
(i+). (4.5)

Here, T(i−) denotes the set of all random tapes involved in the simulation before the adversary makes

the query Q0i , whereas T(i+), those after the query Q0i .
5 Note that T(1) consists of the partitions

(T(2−)×T2
(2+)), (T(3−)×T2

(3+)) and (T(q−)×T2
(q+)). We use the shorthand T(1,j<) (resp. T(1,j>)) to

denote the union ∪ji=2(T(i−) × T2
(i+)) (resp. ∪qi=j+1(T(i−) × T2

(i+))). Thus, T(1) = T(1,j<) ∪ T(1,j>).

Finally, T(3) denotes the universe of random tapes for all four rounds of simulation6 with the

adversary forked as per the illustration in Figure 4.4. We follow the same subscripting convention

for individual tapes as well with the round is indicated in the superscript; e.g ., T0i− denotes the

random tape involved in the first round of simulation up till the adversary makes the query Q0i (see

Figure 4.4).

Defining the notions of “good”. The notion of good is defined akin to the notion of “good”

for the Schnorr signature scheme in §2.3.2.3: a tape in set T is deemed to be good if it leads

to the adversary successfully forging. Thus, by definition, at least ε fraction of the tapes in T

are good. However, the refined notion for good is a bit different as there are two random oracles

in consideration. A tape in set T is deemed to be good(j,i) if it leads to the adversary forging

5Keep in mind that the set T(i−) can be further represented by the Cartesian product of the two sets T(j−) and
T(ji) as shown below.

T(1) =

q⋃
i=2

(
T(j−) × T(ji)

)
× T2

(i+)

Here T(j−) denotes the set of all random tapes involved in the simulation before the adversary makes the query Q0
j ,

whereas T(ji) denotes those from the query Q0
j to the query Q0

i . In fact, this representation is in agreement with the

Figure 4.4 more than the one in (4.5).
6It can be worked out that the universe of tapes for three forkings is

T(3) =

q−1⋃
j=1

(
T(j−) ×

(
q⋃

i=j+1

(
T(ji) × T2

(i+)

))2)
.

.

Chapter 4. Galindo-Garcia IBS, Improved 78

. .

· Q0I0

. .

· Q0J0

. .

· Q2I2

. .

T0J0−

T0J0I0

T0I0+

T1I0+

T2J0I2

T2I2+

T3I2+

Figure 4.4: The tapes involved in the nested replay attack involving three forkings (carried out

using the Rewinding Technique).

successfully and with a target H-index of j and a target G-index of i. In addition, good(j,∗) denotes

a tape which leads to the adversary forging successfully with a target H-index i and any target

G-index. In a analogous manner, we define the notion of good(∗,i). The key to an improved analysis

requires circumventing the notion of good(j,i) through the notion of good(1) and, its refinements,

good(1,j,∗) and good(1,∗,i). This, in turn, is made possible by our observations in §4.2–i.e., through

(in)dependency.

The notion of good(1) is also related to the “higher” notion of good(1) that was defined for Schnorr

Signature (in Remark 6). Recall that, for Schnorr Signature, the notion of good(1) applies to tapes

participating in two rounds of simulations associated with (the only) forking. However, in the case

of GG-IBS, there are two random oracles in consideration. Thus, the notion of good(1) could be

applied to tapes participating in replay of either of these oracles. But, as we are concerned with

the replay of the G-oracle in the first two rounds of the nested replay attack (see Figure 4.4), the

underlying set for which the notion of good(1) applies is defined to be T(1). A triplet of tape segments

(TI−, (TI+, T
′
I+)) ∈ T(1) is considered to be good(1) if the tapes T = (TI−, TI+) and T′ = (TI−, T

′
I+)

are both good(∗,I). To paraphrase, the tape is good(1) if the replay of the G-oracle using tapes T

and T′ is successful. We define the refined notions of good(1,j,i), good(1,∗,i) and good(1,j,∗) the same

way we had defined it for the notion of good. Finally, a tape in T(3) is good(3) if the nested replay

attack launched as in Figure 4.4 using the tape is successful. Keeping these notions in mind, we

proceed to the probability analysis of the nested replay attack.

Chapter 4. Galindo-Garcia IBS, Improved 79

Probability Analysis. Our objective is to lower bound the fraction of good(3) tapes in T(3) in

terms of the fraction of good tapes in T. This is accomplished through three claims: Claim 3.1

through Claim 3.3, which, in turn, requires two iterations of the Splitting Lemma (Lemma 1).

The objective of the first iteration of the Splitting Lemma (in Claim 3.1) is to establish a lower

bound on the fraction of good(1) tapes in T(1), in terms of the fraction of good tapes in T. This

bound is, in turn, to be used in the second iteration (in Claim 3.3) to lower bound the fraction of

good(3) tapes in T(3). However, the second iteration is far more involved than the first iteration–we

need an intermediate Claim 3.2. Nevertheless, the usage of the Splitting Lemma, on a high level,

is (self) similar to that in the first iteration; it’s the underlying set, the associated probabilities and

the notion of “good” that differs. Let’s focus on the first two rounds of simulation of the adversary

(see Figure 4.4).

Claim 3.1. At least ε2/4q fraction of the tapes in T(1) are good(1).

Argument. The analysis, because of dependency, turns out to be similar to analysing the two

rounds of the elementary replay attack bar the definition of the notion of “good”–we use the notion

of good(∗,i) in place of good(i). Let’s presume that εi fraction of the tapes in T are good(∗,i). Thus,

we have

q∑
i=1

εi =

q∑
i=2

P(I = i ∧ J > 0)

= P(1 ≤ J < I ≤ q) = ε(by definition). (4.6)

The notion of good(∗,i), which we defined for the set T, is adapted for the set T(i−)×T(i+) through

the split and join functions (see §2.3.2.3). A tape (Ti−, Ti+) ∈ T(i−)×T(i+) is deemed to be good(∗,i)

if its counterpart in T is good(∗,i). We denote the (sub)set of all such tapes in T(i−) × T(i+) by Vi.

Also, suppose that at least βi fraction of tapes in T(i−) × T(i+) are better(∗,i). On these underlying

assumptions, the analysis proceeds in a manner (almost) similar to that of the elementary replay

attack (using the Rewinding Technique) in §2.3.2.3. Thus, we may conclude that the first two

rounds of the nested replay attack are successful with a probability of at least ε2/4q. Moreover,

it follows from the definition (of good(1)) that at least ε2/4q fraction of tape segments in T(1) are

good(1).

The second iteration of the Splitting Lemma is a bit trickier than the first one. We have to

prime the set T(1) before actually applying the Splitting Lemma. The partitions of the set T(1) come

Chapter 4. Galindo-Garcia IBS, Improved 80

into play. Let’s focus on a particular partition (T(i−) × T2
(i+)). It is not difficult to infer that the

set of good(1,∗,i) tapes in T(1), in fact, all belong7 to the partition (T(i−) × T2
(i+)). These good(1,∗,i)

elements can be further partitioned, depending on their target H-index, into subsets containing the

good(1,j,i) elements. The set of all such good(1,j,i) elements, across the partitions (of T(1)), form the

good(1,j,∗) elements of T(1). Let δj denote the fraction of all such tapes in T(1). By implication,

q−1∑
j=1

δj =

q−1∑
j=1

P(J1 = J0 = j ∧ I1 = I0 ∧ 1 < I0 ≤ q)

= P(J1 = J0 ∧ I1 = I0 ∧ 1 ≤ J0 < I0 ≤ q)

≥ ε2/4q(using Claim 3.1) (4.7)

That brings us to our second claim.

Claim 3.2. At least δj fraction of tapes in T(1,j>) are good(1,j,∗).

Argument. Let’s presume that the tape involved in the first two rounds of simulation (the replay

of G-oracle) was good(1,j,i). Our argument relies on two observations: i) the candidate tapes for

the replay of the H-oracle belong to T(1,j>); and ii) a good(1,j,∗) element cannot belong to T(1,j<).

The first of the observations follows by definition, whereas the second–a consequence of dependency

between the two random oracles–requires some explanation. Let’s assume the contrary: a tape is

good(1,j,∗) and it belongs to T(1,j<). Consequently, it is good(1,j,i) for some i < j. However, the

dependency H ≺ G means that an adversary has to make the target queries in the order H < G

which, in turn, implies j < i (leading to a contradiction). Thus, the good(1,j,∗) elements all belong

to T(1,j>).

The two observations, in conjunction with the fact that T(1,j>) is a subset of the set T(1) (of

which at least δj fraction are good(1,j,∗) elements) completes the proof.

Claim 3.3. The fraction of good(3) tapes in T(3) is at least ε4/64q3.

Argument. Let’s assume that the tape involved in the first two rounds of simulation T01 := (T0I0−, (T
0
I0+

, T1I0+))

is good(1,J0,I0). We further split the tape segment T0I0− into two: T0J0− and T0J0I0
. Here, T0J0− is the

tape involved in the simulation before the adversary makes the target query Q0J0
, whereas T0J0I0

,

7Strictly speaking, we have to take into consideration the non-core conditions.

Chapter 4. Galindo-Garcia IBS, Improved 81

that from the query Q0J0
up to the query Q0I0 (see Figure 4.4). Thus, an alternative representation

of the tape T01 is

T01 :=
(
T0J0−, T

0
J0I0 ,

(
T0I0+, T

1
I0+

))
:=
(
T0J0−, T

0
1,J0I0+

)
(using shorthand notation)

The simulator, next, proceeds with the remaining two rounds of simulations by forking at Q0J0
and

Q2I2 (in that order). Let T21,J0I2+
:= (T2J0I2

, (T2I2+, T
3
I2+

)) ∈ T(1,J0I2+) denote the tapes involved in

the aforementioned simulation. Thus, we end up with the tapes given in Figure 4.4. The nested

replay attack, all four rounds of it, is successful if the tape

T21 :=
(
T0J0−,

(
T2J0I2 ,

(
T2I2+, T

3
I2+

)))
turns out to be good(1,J0,I2) (note that I2 need not be the same as I0). Our objective is to find

the probability of this particular event using the Splitting Lemma. This requires T(1) to be split

into T(J0−) and ∪qi=J0
(T(J0i)

× T2
(i+)). This, in turn, can be achieved by splitting the individual

partitions of T(1). But note that not all of the partitions in T(1) can be split in such a way.

In fact, by definition, it is viable only to the partitions (T(i−) × T2
(i+)) for i > J0, i.e. the set

T(1,J0>). At this point Claim 3.2 comes into play. It allows us to apply the Splitting Lemma to

the “reduced” universe of T(1,J0>) (by ensuring that at least δJ0 fraction of the tapes in T(1,J0>)

too are good(1,J0,∗)). We are now ready to apply the Splitting Lemma.

Let’s assume that an arbitrary λj fraction of the tapes in T(1) (and hence T(1,J0>)) are better(1,j,∗).

We denote the (sub)set of good(1,J0,∗) elements and the better(1,J0,∗) elements in T(1,J0>) by UJ0
and

U∗J0
respectively. For ease of analysis, we use the sufficient condition that the tape T01 be good(1,J0,∗)

and the T21 be better(1,J0,∗). Let’s denote the probability of this event (with the tapes sampled as

described above) by δ′J0
, i.e.,

δ′J0
= P(

(
T0J0−, T

0
1,J0I0+

)
∈ U∗J0

∧
(
T0J0−, T

2
1,J0I2+

)
∈ UJ0

)

= P(
(
T0J0−, T

2
1,J0I2+

)
∈ UJ0

|
(
T0J0−, T

0
1,J0I0+

)
∈ U∗J0

) · P(
(
T0J0−, T

0
1,J0I0+

)
∈ U∗J0

)

= (δJ0 − λJ0)λJ0(using propositions 1 and 2 of Lemma 1) (4.8)

The above expression attains a maxima of δ2J0
/4 at the point λJ0 = δJ0/2. Now, the probability

Chapter 4. Galindo-Garcia IBS, Improved 82

that the nested oracle replay attack is successful for any J0 is given by

δ′ =

q−1∑
J0=1

δ′J0
≥

q−1∑
J0=1

δ2J0

4

≥ ε4

64q3
(using Hölder’s inequality and (4.7)) (4.9)

Significance of (in)dependency. Dependency plays a crucial role in the first two claims. It is

the first criterion of Definition 14 which allows us to apply the Splitting Lemma to a reduced

universe of tapes in Claim 3.2. The second criterion of dependency comes into play in Claim 3.1.

It ensures: if, indeed, the two tapes (TI−, TI+) and (TI−, T
′
I+) are both good(1,∗,I), then they have

the same target H-index as well. In fact, this is the sole reason why the analysis proceeds as

in §2.3.2.3. These two handles, together, reduce the degradation by O(q2). Independency, on

the other hand, is used in Claim 3.3. Recall that a good(1,∗,i) can only belong to the partition

(T(i−) × T2
(i+)). Without independency, the set of candidate tapes (for replay of the H-oracle at a

particular index j) is restricted to (T(i−) × T2
(i+)). But, relaxing this condition (i.e., incorporating

independency) “expands” the set of candidate tapes to T(1,j>). On a high level, this reduces the

degradation by O(q). Apply the two observations together, the degradation is reduced by O(q3).

The characteristic expression. An interesting observation is that the second iteration of the

Splitting Lemma, on a high level, seems to be similar to the first one. This is also captured by the

fact that the analysis is abstracted out by the characteristic expressions8

δ′ ≥
q−1∑
j=1

δ2j and ε′ ≥
q∑
i=2

ε2i

under the set of constraints

q−1∑
j=1

δj = ε′ ,

q∑
i=2

εi = ε and (0 ≤ εi, δj ≤ 1)i,j∈{1,...,q}.

Clearly, there is a degree of self-similarity in the two expressions and, in addition, the expressions

themselves are quite disparate from that of the nested replay attack (and the MF algorithm for

8In fact, it was the characteristic expression that guided us to the analysis (and not the other way around).

Chapter 4. Galindo-Garcia IBS, Improved 83

n = 3) in (2.21).

4.3.3 Taking Stock

It is evident that the modified GG-IBS allows far tighter reductions. The effective degradation is

reduced from O((qH + qG)6) to O((qH + qG)3) (see Table 4.1). The “gain”, which is substantial,

is by the virtue of the multiple forkings being replaced, on a high level, by (two) general forkings.

This, in turn, is endowed by our observations in §4.2.

Scheme Security Argument

GG-IBS (Chapter 3)

Reduction R1 R2 R3

Forking FY MW1 MW3

Degradation O(qGqε) O((qH + qG)2) O((qH + qG)6)

Modified GG-IBS (Figure 4.3)

Reduction R′1 R′3

Forking FY Nested rewinding

Degradation O(qGqε) O((qH + qG)3)

Table 4.1: Degradation for the original and modified GG-IBS. qG (resp qH) denotes the upper bound

on the H-oracle (resp G-oracle) queries, whereas, qε denotes upper bound on the extract queries.

Chapter 5

From sID IBS to ID IBS without

Random Oracles

5.1 Introduction

The selective-identity (sID) model for identity-based cryptographic schemes was introduced in

[CHK03]. The distinguishing feature of this model is that the adversary has to commit, beforehand,

to a “target” identity–i.e., the identity which it eventually forges on (see Definition 10). Since

its induction, the relationship of the sID notion with various other notions of security has been

extensively studied [CS06, CFH+09, Gal06, GH05]. One of the interesting results is the separation

between the sID models and ID models for IBE in the standard model [Gal06]. Therefore, it is a

general consensus that the sID model is much weaker than the full-identity (ID) model. However, it

is easier to design efficient schemes, based on weaker assumptions, that are secure in the sID model

compared to the ID model. This is, in particular, highlighted by the disparity in the construction

of IBE schemes given in [BB04a] and [Wat05]. The former is simple and efficient, whereas the

latter, involved. Therefore, a generic transformation from an sID scheme to ID scheme would be a

problem worth pursuing. We could design efficient sID-secure schemes and then just bootstrap it

to ID-security using the transformation1. In fact, this is a long-standing open problem.

The primary focus of this chapter is on the question of constructing an ID-secure IBS, given an

sID-secure IBS, in the standard model, and with reasonable security degradation (say polynomial).

1A well-known example of such an approach is the design of CCA-secure encryption schemes from CPA-secure ones
using the Fujisaki-Okamato transformation [FO99], as demonstrated in [BF01].

84

Chapter 5. From sID IBS to ID IBS without Random Oracles 85

We accomplish this through a generic transformation which uses a CHF and a weakly-secure PKS as

black-box [CK13b]. We go one step further by applying the same construction technique to a relaxed

notion of IBS security which we call the weak selective-identity (wID) model. The distinguishing

feature of the wID model is that the adversary, apart from committing to the target identity, has to

commit to a set of “query” identities–the set of identities which it wishes to query the signature and

extract oracle with (see §5.4 for the definition of the security model). Thus, we reduce the problem

of constructing an ID-secure IBS to that of constructing wID-secure IBS, a EU-GCMA-secure PKS

and a CHF. Our approach can be considered to be an alternative paradigm to the aforementioned

folklore construction of IBS.

The security argument constitutes the main hurdle–the construction itself is quite straightfor-

ward. The line of argument, roughly, is: given an adversary that breaks the ID-IBS, we construct

algorithms to break either the sID/wID-IBS, the PKS or the CHF. It leads to a tightness gap of

O(qs), where qs is the upper bound on the number of signature queries that the adversary is allowed

to make.

5.2 Chameleon Hash Function

A chameleon hash function (CHF) is a randomised trapdoor hash function. Apart from the collision

resistance property, it has an additional “chameleon” property which enables anyone with the

trapdoor information to efficiently generate collisions.

Definition 15 (Chameleon Hash Function [BCC88, KR00, Moh11]). A family of CHF H consists

of three PPT algorithms {G,h,h−1} described below.

Key Generation, G(1n): It takes as input the security parameter n (in unary). It outputs the

evaluation key ek and the trapdoor key td.

Hash Evaluation, h(ek,m, r): It takes as input the evaluation key ek, a message m from the

message-space M and a randomiser r from the domain R. It outputs the hash value y from

the range Y.

Collision Generation, h−1(td,m, r,m′): It takes as input the trapdoor key td, two messages

m,m′ ∈M and r ∈ R. It outputs r′ ∈ R such that h(ek,m, r) = h(ek,m′, r′); in other words,

(m, r) and (m′, r′) is a collision.

Chapter 5. From sID IBS to ID IBS without Random Oracles 86

Any CHF should satisfy the following two properties.

(i) Uniformity. The distribution induced by h(ek,m, r) for all messages m and a randomly chosen

r should be the same. In other words, the distributions (ek, h(ek,m, r)) and (ek, y) should

be computationally indistinguishable, where (ek, td)
$←− G(1n), r

U←− R and y
U←− Y.

(ii) Collision Resistance. Given the evaluation key ek, it should be hard to compute a pair

(m, r) 6= (m′, r′) such that h(ek,m, r) = h(ek,m′, r′), i.e. the probability given below should

be negligible for all PPT adversaries A.

P(h(ek,m, r) = h(ek,m′, r′) ∧ (m, r) 6= (m′, r′) : (ek, td)
$←− G(1n); (m, r,m′, r′)

$←− A(ek))

5.3 The Generic Transformation

The transformation takes as input: i) an sID-secure IBS Is := {Gs,Es, Ss,Vs}; ii) an EU-GCMA-

secure PKS P := {K,Sp,Vp}; and iii) a CHF H := {Gh, h,h−1}, to output an ID-secure IBS

I := {G,E, S,V}. The basic idea is to map an identity id in I to an identity ids in Is using the

CHF. These two identities are then bound by using the PKS. A formal description follows.

Assumptions. We denote the identity-space of Is (and that of resulting I) by I and its message-

space by M. For simplicity, we assume that i) the message-space of P ii) the message-space of H

(denoted by Mh) and iii) the range of H (denoted by Y) are all the same set I, i.e., Mh = Y = I.2

In addition, the randomness space of H is denoted by R. Therefore, for a particular evaluation key

ek, the hash evaluation algorithm can be considered as a function h : I × R 7→ I. The description

of the transformation is given in Figure 5.1 [CK13b]. It is followed by the argument that the

resultant IBS I is secure in the ID model.

I ← T(Is,P,H)

Set-up, G(1n): Invoke the algorithms Gs, K and Gh (all) on 1n to obtain (msks, mpks),

(sk, pk) and (ek, td) respectively. Return msk := (msks, sk) as the master secret key and

mpk := (mpks, pk, ek) as the master public key.

2This assumption can be relaxed–to accommodate a CHF with Mh 6= Y 6= I–using two collision resistant hash
functions H and G defined as follows:

H : I 7→ Mh and G : Y 7→ I
These hash functions can be used in the protocol, and also in the security argument, to couple the CHF with the
IBS.

Chapter 5. From sID IBS to ID IBS without Random Oracles 87

break

Key Extraction, E(id, msk): Select r
U←− R and compute ids ← h(ek, id, r). Next, run

Es(ids, msks) and Sp(ids, sk) to obtain usks and σp respectively. Finally, return usk :=

(usks, r, σp) as the user secret key.

Signing, S(id,m, usk): Parse the user secret key usk as (usks, r, σp) and compute ids ←

h(ek, id, r). Next, run Ss(ids,m, usks) to obtain σs. Finally, return σ := (σs, r, σp) as

the signature.

Verification, V(σ, id,m, mpk): Parse σ as (σs, r, σp) and compute ids ← h(ek, id, r).

Return 1 only if σp is a valid signature on ids and σs is a valid signature on (ids,m). In

other words, if opp ← Vp(σp, ids, pk) and ops ← Vs(σs, ids,m, mpk), return (opp ∧ ops).

Figure 5.1: Constructing ID-secure IBS from an sID-secure IBS.

The Hash Evaluation function h is used to maintain a map and identity id in I on to and identity

ids in Is. The mapped identities are then bound using σp. This is reflected in the structure of the

user secret key for id which is of the form (usks, r, σp).

Remark 18. Note that we have omitted td from the master secret key. The trapdoor key td–

hence the collision generation function h−1–is not used per se in the transformation. However, it

does play a crucial role in its security argument.

5.3.1 Security Argument

For simplicity, we consider the security of the specific case of EU-sID-CMA model; we argue that

the resulting IBS is EU-ID-CMA-secure. The details of both the security models is given in §1.3.2.

The line of argument can be easily extended to other models as well3.

Theorem 4. Let A be an (ε, t, qε, qs)-adversary against the IBS I in the EU-ID-CMA model. We

can construct either

(i) Algorithm Bs which (εs, ts, qε, qs)-breaks Is in the EU-sID-CMA model, where

εs ≥
1

3qs
ε and ts ≤ t+ (qε + qε)τ1, or

3e.g ., consider the sM-sID-CMA model - the selective-message, selective-identity chosen-message attack model. It
is similar to the EU-sID-CMA model, except that the adversary–in addition to committing to the target identity–has
to commit to the target message too. If we start from sM-sID-CMA-secure IBS, we end up with an sM-ID-CMA-secure
IBS.

Chapter 5. From sID IBS to ID IBS without Random Oracles 88

(ii) Algorithm Bp which (εp, tp, qε + qs)-breaks P in the EU-GCMA model, where

εp =
1

3
ε and tp ≤ t+ (qετ2 + qsτ3), or

(iii) Algorithm Bh which (εh, th)-breaks H, where

εh =
1

3
ε and th ≤ t+ (qε + qs)τ1 + (qετ2 + qsτ3).

Here, qε (resp. qs) denotes the upper bound on the number of extract (resp. signature) queries that

A can make. τ1 is the time taken for generating a signature in P; τ2 (resp. τ3) denotes the time

taken to generate a user secret key (resp. signature) in Is.

Proof. We classify the forgeries (mutually-exclusively) into three: type 1,type 2 and type 3. A

forgery qualifies as type 1 if the adversary makes at least one signature query on the “target”

identity–the identity which A eventually forges on–and produces a forgery with the binding (pro-

vided by the simulator) intact. In both type 2 and type 3 forgeries, the binding is violated by

the adversary by some means. The strategy adopted in each of the three cases is different; we give

a reduction Bs for type 1, Bp for type 2 and Bh for type 3 adversary. The details follow.

Classifying the forgery. Consider an adversary A in the EU-ID-CMA model. At the beginning of

the security game, A is given the challenge master public key mpk by (its challenger) C. A produces

a forgery after making a series of queries–extract and signature–adaptively with C. Let i̇di denote

the ith extract query made by A, which is responded to with uski = (usks,i, ṙi, σ̇p,i) by C. Similarly,

(idi,mi) denotes the ith signature query by A, which is responded to with σi = (σs,i, ri, σp,i) by

C. Note that the number of extract (resp. signature) queries is bounded by qε (resp. qs). Finally,

let σ̂ = (σ̂s, r̂, σ̂p) be the forgery produced by A on (îd, m̂). The identity îd is the so-called target

identity. The forgeries can be partitioned into three types,viz .:

(i) type 1 forgery. A produces the forgery with (îd, r̂) = (idi, ri) for some i ∈ {1, . . . , qs}.

(ii) type 2 forgery. A produces the forgery with (îd, r̂) 6= (idi, ri) for all i ∈ {1, . . . , qs}, and

with

(a) h(ek, îd, r̂) 6= h(ek, i̇di, ṙi) for all i ∈ {1, . . . , qε}, and

(b) h(ek, îd, r̂) 6= h(ek, idi, ri) for all i ∈ {1, . . . , qs}.

Chapter 5. From sID IBS to ID IBS without Random Oracles 89

(iii) type 3 forgery. A produces the forgery with (îd, r̂) 6= (idi, ri) for all i ∈ {1, . . . , qs}, but

with

(a) h(ek, îd, r̂) = h(ek, i̇di, ṙi) for some i ∈ {1, . . . , qε}, or

(b) h(ek, îd, r̂) = h(ek, idi, ri) for some i ∈ {1, . . . , qs}.

If A produces a forgery of type 1, we construct an algorithm Bs which breaks the IBS scheme Is;

whereas, in case of type 2 forgery, we construct an algorithm Bp which breaks the PKS scheme P;

and finally, in case of type 3 forgery, we construct an algorithm Bh that breaks collision resistance

property of the CHF H. We describe these reductions in the subsequent sections.

5.3.1.1 Reduction Bs.

Recall that in type 1 forgeries, A makes at least one signature query on the target identity îd.

The strategy is to guess the index of this identity and map it to the identity that Bs commits to

(initially) in the EU-sID-CMA game. This leads to a degradation of O(qs).

Cs

Is

O{s,ε},Is

Bs

Is I

O{s,ε}

A

I
ĩds

mpks

EU-sID-CMA

σ̂s

mpk

EU-ID-CMA

σ̂

Figure 5.2: Reduction Bs

Let Cs be the challenger in the EU-sID-CMA game. Bs plays the role of the adversary in

the EU-sID-CMA game and, at the same time, the role of the challenger to A in the EU-ID-CMA

game. It starts by running the Key Generation algorithms K and Gh to obtain (pk, sk) and (ek, td)

respectively. In order to initiate the EU-sID-CMA game, Bs has to commit to a target identity. It

does so by selecting an identity ĩd
U←− I and a randomiser r̃

U←− R, and committing ĩds ← h(ek, ĩd, r̃)

to Cs. As a result, Cs releases the challenge master public key mpks to Bs. Bs is also allowed access

to a signature oracle OS,Is . Now, Bs passes mpk:= (mpks, pk, ek) as its own challenge master public

key to A. Next, Bs guesses 1 ≤ ˜̀≤ qs as the index of the target identity.

Mapping the identities. In order to track the mapping between the identities in I and Is, Bs

maintains a table L. It also maintains a counter ` (initially 1) to track the index of these identities.

Chapter 5. From sID IBS to ID IBS without Random Oracles 90

L contains tuples of the form 〈id, ids, `, usk〉. Here, id and ids are the related identities from I

and Is respectively; ` is the index of the identity id. The usk-field stores the user secret key for

id and hence contains elements of the form (usks, r, σp). If any component of the usk-field is yet

to be generated, it is indicated by a ‘⊥’.

An identity id has already been mapped if there exists 〈idi, ids,i, `i, usk〉 in L such that idi =

id. For mapping a fresh identity id, Bs chooses r
U←− R and sets ids ← h(ek, id, r).4 Finally, it

adds 〈id, ids, `, (⊥, r,⊥)〉 to L and increments ` by one. A more formal description of the mapping

function is given below.

Ms(id):

if ∃ a tuple 〈idi, ids,i, `i, uski〉 ∈ L such that (idi = id) then

Set τ := (ids,i, `i, uski)

else

if (` = ˜̀) then set r ← h−1(td, ĩd, r̃, id)

else choose r
U←− R

Compute ids ← h(ek, id, r) and set τ := (ids, `, (⊥, r,⊥))

Add 〈id, ids, `, (⊥, r,⊥)〉 to L and increment ` by one

end if

return τ

Queries. The extract and signature queries by A are answered as per the following specifications.

Extract query, Oε,I (id): Invoke the function Ms(id) to obtain (ids, `, (usks, r, σp)).

(i) If (` = ˜̀) then Bs aborts (abort1).

(ii) Otherwise, if (usks 6= ⊥) then return usk := (usks, r, σp) as the user secret key.

(iii) Otherwise, Bs makes an extract query with Oε,Is on ids to obtain usks. Next, it uses the

knowledge of sk to compute σp := Sp(ids, sk). Finally, it returns usk := (usks, r, σp)

as the user secret key and updates the usk-field of the tuple corresponding to id in L.

Signature query, OS,I (id,m): Invoke the function Ms(id) to obtain (ids, `, (usks, r, σp)).

4If there already exists a tuple 〈idi, ri, ids,i, `i, uski〉 such that ids,i = ids, to maintain injection in the mapping,
Bs repeats the process with a fresh r.

Chapter 5. From sID IBS to ID IBS without Random Oracles 91

(i) If ((` = ˜̀)∨(usks = ⊥)) then Bs then makes a signature query with OS,Is on (ids,m) to

obtain σs. It uses the knowledge of sk to compute σp := Sp(ids, sk). Finally, it returns

σ := (σs, r, σp) as the signature.

(ii) Otherwise, Bs uses the knowledge of the user secret key usk to generate the signature,

i.e. it returns σ := S(id,m, usk).

Forgery. At the end of the simulation, A produces a type 1 forgery σ̂ = (σ̂s, r̂, σ̂p) on (îd, m̂).

Let 〈id
î
, id

s,̂i
, l̂i, uskî〉 be the tuple in L such that id

î
= îd. If ˆ̀i matches Bs’s initial guess for

the target index (i.e. ˆ̀i = ˜̀), it wins the EU-sID-CMA game with Cs by passing σ̂s as a forgery on

(ĩds, m̂) to Cs; otherwise it aborts (abort2).

Analysis. The probability of success of the reduction Bs is governed by the two events abort1

and abort2. To be precise,

εs = P(¬abort1 ∧ ¬abort2)ε

= P(¬abort1 | ¬abort2)P(¬abort2)ε.

Since ˜̀ is hidden from the adversary, it is easy to see that

P(¬abort2) = P
(

ˆ̀i = ˜̀
)

= 1/qs.

On the other hand, P(¬abort1 | ¬abort2) = 1. This follows from the fact that if the simulator’s

guess of the target index was indeed correct (¬abort2), then the adversary would not have made an

extract query on that identity (which causes abort1). Thus, εs = ε/qs. As for the time complexity,

if τ1 is the time taken for generating a signature in P, then the time taken by Bs can be easily seen

as ts ≤ t+ (qε + qs)τ1.

5.3.1.2 Reduction Bp.

The strategy adopted in Bp is similar to that in security arguments of [HW09, ST01]. It is also, on

a high level, related to the technique used in [BB04b] for proving the security of the EU-CMA-secure

PKS scheme constructed from EU-GCMA-secure PKS scheme (using CHF implicitly). The details

follow.

Chapter 5. From sID IBS to ID IBS without Random Oracles 92

Cp

PKS

Bs

PKS I

O{s,ε}

A

IM̃
mpks

EU-GCMA
σ̂p

mpk

EU-ID-CMA
σ̂

Figure 5.3: Reduction Bp

Let Cp be the challenger in the EU-GCMA game. Bp plays the role of the adversary in the EU-

GCMA game and, at the same time, the role of the challenger to A in the EU-ID-CMA game. It starts

by running the Key Generation algorithms Gs and Gh to obtain (mpks, msks) and (ek, td) respectively.

In order to initiate the EU-GCMA game, Bp has to commit to a set of qs messages to Cp. On the

other hand, it also has to answer the adaptive queries by A. Let’s see how this is accomplished using

the CHF. Bp first selects pairs (ĩd1, r̃1), . . . , (ĩdqs , r̃qs) independently and uniformly at random from

I × R. Next, it commits M̃ := {ĩds,1, . . . , ĩds,qs} to Cs, where ĩds,i ← h(ek, ĩdi, r̃i). As a result,

Cp releases the challenge public key pk to Bp along with the set of signatures {σp,1, . . . , σp,qs}

on the (respective) committed messages. All this information is stored in a table C as tuples

〈ĩdi, r̃i, ĩds,i, σp,i〉. Now, Bp initiates the EU-ID-CMA game by passing mpk := (mpks, pk, ek) as the

challenge master public key to A.

Mapping the identities. Bp too maintains the table L; but, it’s structure is slightly different

from that in Bs. L contains tuples of the form 〈id, ĩds, usk〉. Here, id and ids are the related

identities from I and Is respectively. The usk-field stores the user secret key for id and hence

contains elements of the form (usks, r, σp). If any component of the usk-field is yet to be generated,

it is indicated by a ‘⊥’.

The way in which the mapping is maintained between the identities is somewhat different from

that in Bs. For mapping a fresh identity id, Bp first picks an tuple t = 〈ĩds, ĩd, r̃, σp〉 randomly

from C. It then computes r ← h−1(td, ĩd, r̃, id), and adds the tuple 〈id, ĩds, (⊥, r, σp)〉 to L.

Finally it removes the tuple t from C. As a result of these actions, id is effectively mapped to ĩds

since h(ek, id, r) = h(ek, ĩd, r̃) = ĩds. A more formal description follows.

Mp(id):

if ∃ a tuple 〈idi, ids,i, uski〉 ∈ L such that (idi = id) then

Set τ := (ids,i, uski)

else

Chapter 5. From sID IBS to ID IBS without Random Oracles 93

break

Pick t
$←− C and parse it as 〈ĩd, r̃, ĩds, σp〉

Compute r ← h−1(td, ĩd, r̃, id) and set τ := (ids, (⊥, r, σp))

Add 〈id, ids, (⊥, r, σp)〉 to L and remove t from C

end if

return τ

Queries: The extract and signature queries by A are answered as follows.

Extract query, Oε,I (id): Invoke the function Mp(id) to obtain (ĩds, `, (usks, r, σp)).

(i) If (usks 6= ⊥) then return usk := (usks, r, σp) as the user secret key.

(ii) Otherwise, Bs uses the knowledge of the master secret key msks to generate the user

secret key usks := Es(ĩds, msks) for ĩds. It returns usk := (usks, r, σp) as the user secret

key for id and updates the usks-field of the tuple corresponding to id in L.

Signature query, OS,I (id,m): Invoke the function Mp(id) to obtain (ĩds, `, (usks, r, σp)).

(i) If (usks 6= ⊥) then Bp uses the knowledge of usk to return the signature σ := S(id,m, usk)

(ii) Otherwise, Bs uses step (ii) of Extract query to generate a user secret key usk for id

and then use this usk to return a signature σ := S(id,m, usk).

Forgery. Finally, A produces a forgery σ̂ = (σ̂s, r̂, σ̂p) on (îd, m̂). As the forgery is of type 2,

it implies îds := h(ek, îd, r̂) 6∈ M̃. Therefore σ̂p is a valid forgery in the EU-GCMA game and Bp

passes it to Cs to win the game.

Analysis. Since no abort is involved in Sp, there is no degradation involved either. Thus, its

advantage in attacking P is εp = ε. If τ2 and τ3 denote the time taken for generating a secret key

and a signature respectively in Is, then the time taken by Bp is tp ≤ t+ (qετ2 + qsτ3).

5.3.1.3 Reduction Bh.

Bh first obtains the challenge evaluation key ek for H from its challenger Ch. Then it invokes

the algorithms Gs and K to generate (msks, mpks) and (sk, pk) respectively. Finally, it passes

(mpks, pk, ek) as the challenge master public key to A.

Chapter 5. From sID IBS to ID IBS without Random Oracles 94

Ch

CHF

Bh

CHF I

O{s,ε}

A

Iek

CHF

χ

mpk

EU-ID-CMA

σ̂

Figure 5.4: Reduction Bh

Mapping the identities. The table used for maintaining mapping has the same structure as in

Bp. However, the actual method used for mapping identities is far simpler than in Bp as shown

below.

hM(id):

if ∃ a tuple 〈idi, ids,i, uski〉 ∈ L such that (idi = id) then

Set τ := (ids,i, uski)

else

Pick r
U←− R and compute ids := h(ek, id, r)

Set τ := (ids, (⊥, r, σp)) add 〈id, ids, (⊥, r,⊥)〉 to L

end if

return τ

Queries: The extract and signature queries by A are answered as follows.

Extract query, Oε,I (id): Invoke the function hM(id) to obtain (ids, (usks, r, σp)).

(i) If (usks 6= ⊥) then return usk := (usks, r, σp) as the user secret key.

(ii) Otherwise, Bs uses the knowledge of the master secret key msks to generate the user

secret key usks := Es(ids, msks) for ids. It also uses sk to generate σp := Sp(ids).

Finally, Bh returns usk := (usks, r, σp) as the user secret key for id and updates the

usks-field and σp-field of the tuple corresponding to id in L.

Signature query, OS,I (id,m): Invoke the function hM(id) to obtain (ids, (usks, r, σp)).

(i) If (usks 6= ⊥) then Bp uses the knowledge of usk to return the signature σ := S(id,m, usk)

(ii) Otherwise, Bs uses step (ii) of Extract query to generate a user secret key usk for id

and then use this usk to return a signature σ := S(id,m, usk).

Chapter 5. From sID IBS to ID IBS without Random Oracles 95

Queries. The extract and signature queries by A are answered as follows.

Extract query, Oε,I (id): Let (id, ids, r) be the mapping for id . Bs uses the knowledge

of the master secret key msks to generate the user secret key for ids in Is, i.e. usks :=

Es(ids, msks, mpks). It then uses the knowledge of secret key sk to generate a signature σp on

ids. It returns the user secret key for id

usk := (usks, r, σp).

Signature query, OS,I (id,m): First, Bp generates the user secret key for id by running E,

i.e. usk = E(id, msk, mpk) . Then, Bp uses usk to return the signature

σ := S(id,m, usk).

Forgery. Finally, A produces a type 3 forgery σ̂ = (σ̂s, r̂, σ̂p) on (îd, m̂). Recall that this implies

A produces the forgery with (îd, r̂) 6= (idi, ri) for all i ∈ {1, . . . , qs}, but with

(a) h(ek, îd, r̂) = h(ek, i̇di, ṙi) for some i ∈ {1, . . . , qε}, or

(b) h(ek, îd, r̂) = h(ek, idi, ri) for some i ∈ {1, . . . , qs}.

Both the cases tantamount to breaking the collision resistance property of H. In case (a) (resp. case

(b)) Bh passes χ := ((îd, r̂), (i̇di, ṙi)) (resp. χ := ((îd, r̂), (idi, ri))) as a collision to the challenger

Ch to win the game.

Analysis. As in Bp, there is no abort involved in Bh. Therefore, its advantage in attacking H

is εp = ε. Again, if τ2 and τ3 denote the time taken for generating a secret key and a signature

respectively in Is, then the time taken by Bh is tp ≤ t+ (qετ2 + qsτ3).

5.4 Transforming from the EU-wID-CMA model

The construction technique described in the previous section can as well be used with a relaxed

version of the selective-identity model which we call the weak selective-identity (wID) model. In

this model the adversary, apart from committing to the “target” identity ĩd, has to commit a set

of “query” identities Ĩ. The adversary is allowed to query the extract oracle only on identities

Chapter 5. From sID IBS to ID IBS without Random Oracles 96

belonging to Ĩ; whereas, it is allowed to query the signature oracle with identities from Ĩ as well as

the target identity. Finally, as in the sID model, the adversary has to produce a forgery on ĩd. One

may see the analogy between the EU-GCMA model for PKS and the wID model–both involve the

adversary committing, beforehand, to the identities/messages that it wants to queries to. The only

change involved is in the security argument–the way in which mapping is handled by the simulator.

We elaborate on this later. But first, let’s formally define the EU-wID-CMA model for IBS.

Definition 16 (EU-wID-CMA Game). The security of an IBS scheme in the EU-wID-CMA model

is argued in terms of the following game between a challenger C and an adversary A.

Commitment: A commits to a target identity ĩd and a set of query identities Ĩ := {ĩd1, . . . , ĩdq̃} ⊂

I \ {ĩd}.

Set-up: C runs the set-up algorithm G to obtain the master keys (mpk, msk). It passes mpk

as the challenge master public key to A.

Queries: A can adaptively make extract queries on identities from Ĩ to an oracle OE and

signature queries involving identities from Ĩ∪{ĩd} to an oracle Os. These queries are handled

as follows.

Extract query, OE(id): A asks for the secret key of a user with identity id ∈ Ĩ. C

computes usk := E(id) and passes it to A.

Signature query, Os(id,m): A asks for the signature of a user with identity id ∈

Ĩ ∪ {ĩd} on a message m. C first runs E on id to obtain the user secret key usk. Next,

it computes σ := S(id,m, usk) and forwards it to A.

Forgery: A outputs a signature σ̂ on a message m̂ and the target identity ĩd wins the game

if:

1. σ̂ is a valid signature on m̂ by ĩd.

2. A has not made a signature query on (ĩd, m̂).

The advantage that A has in the above game, denoted by AdvEU-wID-CMA
A (n), is defined as the

probability with which it wins the game, i.e.

P(1← V(σ̂, îd, m̂, mpk) : (ĩd, Ĩ) $←− A; (msk, mpk)
$←− G(1n); (σ̂, îd, m̂)

$←− A
OE ,Os(mpk))

Chapter 5. From sID IBS to ID IBS without Random Oracles 97

where the oracles OE and Os are restricted to answering queries involving identities from Ĩ and

Ĩ ∪ {ĩd} respectively. An adversary A is said to be an (ε, t, qε, qs, q̃)-forger of an IBS scheme in

the EU-wID-CMA model if it has advantage of at least ε in the above game, runs in time at most

t and makes at most qε and qs extract and signature queries respectively, provided the number of

identities involved in the signature and extract queries, excluding the target identity, is at most q̃.

It is easy to see that q̃ ≤ qε + qs. As we pointed out, the same transformation technique applies;

the only change is in the security argument.

Theorem 5. Let A be an (ε, t, qε, qs)-adversary against the IBS I in the EU-ID-CMA model. We

can construct either

(i) Algorithm Bw which (εw, tw, qε, qs, qε + qs)-breaks Iw in the EU-wID-CMA model, where

εw ≥
1

3qs
ε and tw ≤ t+ (qε + qε)τ1, or

(ii) Algorithm Bp which (εp, tp, qε + qs)-breaks P in the EU-GCMA model, where

εp =
1

3
ε and tp ≤ t+ (qετ2 + qsτ3), or

(iii) Algorithm Bh which (εh, th)-breaks H, where

εh =
1

3
ε and th ≤ t+ (qε + qs)τ1 + (qετ2 + qsτ3).

Here, qε (resp. qs) denotes the upper bound on the number of extract (resp. signature) queries that

A can make. τ1 is the time taken for generating a signature in P; τ2 (resp. τ3) denotes the time

taken to generate a user secret key (resp. signature) in Is.

Proof. The security argument is similar to the one discussed in §5.3.1. The only difference lies in

the way in which the mapping of identities is handled in Bw.

Let Cw be the challenger in the EU-wID-CMA game. Bw plays the role of the adversary in the

EU-wID-CMA game and, at the same time, the role of the challenger to A in the EU-ID-CMA game.

In order to initiate the EU-wID-CMA game, Bw has to commit to a target identity and a target

set. It selects an identity ĩd
U←− I and a randomiser r̃

U←− R, and commits ĩdw ← h(ek, ĩd, r̃) as

the target identity to Cw. Similarly, it selects {ĩdi, . . . , ĩdq̃}
$←− I, {r̃1, . . . , r̃q̃}

$←− R and commits

Chapter 5. From sID IBS to ID IBS without Random Oracles 98

Î := {ĩd1,w, . . . , ĩdq̃,w}, where ĩdi,w ← h(ek, ĩdi, r̃i), as the target set to Cw. As a result, Cw

releases the challenge master public key mpkw to Bs. All this information is stored in a table,

denoted by D, as tuples 〈ĩdi, r̃i, ĩdw,i〉.

Mapping. Bw maintains a table L with structure the same as that in reduction Bp. For mapping

a fresh identity id, Bs chooses a tuple t = 〈ĩd, r̃, ĩdw〉 randomly from D. Next, it computes

r := h−1(td, ĩd, r̃, id) and adds 〈id, ĩdw, (⊥, r,⊥)〉 to L. Finally, it removes the tuple t from D.

As a result of these actions, id is effectively mapped to ĩdw as h(ek, id, r) = h(ek, ĩd, r̃) = ĩdw.

A more formal description follows.

Mw(id):

if ∃ a tuple 〈idi, idw,i, uski〉 ∈ L such that (idi = id) then

Set τ := (idw,i, uski)

else

Pick t
$←− C and parse it as 〈ĩd, r̃, ĩdw〉

Compute r ← h−1(td, ĩd, r̃, id) and set τ := (idw, (⊥, r,⊥))

Add 〈id, idw, (⊥, r,⊥)〉 to L and remove t from C

end if

return τ

Remark 19 (Comparison with the folklore paradigm). The (identities-based) signature of an IBS

scheme constructed using the folklore technique consists of two (public-key) signatures and one

public key of the underlying (fully-secure) PKS. In contrast, the signature of an IBS scheme using

our approach consists of one signature each of the underlying (wID-secure) IBS and (weakly-secure)

PKS and one randomiser from the CHF. The time taken for signing and verification is comparable,

bar the time taken to compute the hash value.

Chapter 6

Conclusions

In this thesis we have identified certain shortcomings in the original security argument of GG-

IBS in [GG09]. Based on our observations, we provide a new elaborate security argument for the

same scheme. Although, the reductions are tighter than their counterparts in the original security

argument, they are still quite loose due to the usage of the MF Algorithm. This motivated us

to explore means to launch the nested replay attack in a more effective manner than in the MF

Algorithm and our (re)search culminated with the notion of (in)dependency. The result was a

cleaner, tighter security argument for GG-IBS with the effective degradation down from O(q6) to

O(q3).

The bound on security reductions for the Schnorr signature has been well-studied [PV05, GBL08,

Seu12]. In the same vein, giving a bound on the reductions for GG-IBS would truly complete the

jigsaw (of GG-IBS). In addition, studying the effect of (in)dependency on the MF Algorithm should

also be worthwhile [CK13a].

On a separate note, we described a generic transformation from sID/wID IBS to full-identity

IBS using a chameleon hash function and a GCMA-secure PKS scheme. It was also supported by an

argument, without using random oracles, that the resulting IBS is secure in the full-identity model

with only linear degradation incurred. An interesting problem would be to replace the EU-GCMA

PKS with a more primitive construct. Extending the transformation for Hierarchical IBS could be

yet another challenging task.

99

Bibliography

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach.

Cambridge University Press, 2009. (Cited on page iii.)

[ARP03] Sattam Al-Riyami and Kenneth Paterson. Certificateless public key cryptography. In

Chi-Sung Laih, editor, Advances in Cryptology - ASIACRYPT 2003, volume 2894 of

Lecture Notes in Computer Science, pages 452–473. Springer Berlin / Heidelberg, 2003.

(Cited on page 2.)

[BB04a] Dan Boneh and Xavier Boyen. Efficient selective-id secure identity-based encryption

without random oracles. In Christian Cachin and Jan Camenisch, editors, Advances in

Cryptology - EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer Science,

pages 223–238. Springer Berlin / Heidelberg, 2004. (Cited on pages 13, 45, 47, 59, 84

and 115.)

[BB04b] Dan Boneh and Xavier Boyen. Short signatures without random oracles. In Christian

Cachin and Jan Camenisch, editors, Advances in Cryptology - EUROCRYPT 2004,

volume 3027 of Lecture Notes in Computer Science, pages 56–73. Springer Berlin /

Heidelberg, 2004. (Cited on page 91.)

[BCC88] Gilles Brassard, David Chaum, and Claude Crépeau. Minimum disclosure proofs of

knowledge. Journal of Computer and System Sciences, 37(2):156 – 189, 1988. (Cited

on page 85.)

[BF01] Dan Boneh and Matt Franklin. Identity-based encryption from the weil pairing. In

Joe Kilian, editor, Advances in Cryptology — CRYPTO 2001, volume 2139 of Lecture

Notes in Computer Science, pages 213–229. Springer Berlin / Heidelberg, 2001. (Cited

on pages 2, 6, 8, 13 and 84.)

100

BIBLIOGRAPHY 101

[BN06] Mihir Bellare and Gregory Neven. Multi-signatures in the plain public-key model and

a general forking lemma. In Proceedings of the 13th ACM conference on Computer and

communications security, CCS ’06, pages 390–399, New York, NY, USA, 2006. ACM.

(Cited on pages 14, 16, 32, 33 and 34.)

[BNN04] Mihir Bellare, Chanathip Namprempre, and Gregory Neven. Security proofs for

identity-based identification and signature schemes. In Christian Cachin and Jan Ca-

menisch, editors, Advances in Cryptology - EUROCRYPT 2004, volume 3027 of Lecture

Notes in Computer Science, pages 268–286. Springer Berlin / Heidelberg, 2004. (Cited

on pages 10, 12, 14 and 44.)

[BPW12] Alexandra Boldyreva, Adriana Palacio, and Bogdan Warinschi. Secure proxy signature

schemes for delegation of signing rights. Journal of Cryptology, 25:57–115, 2012. (Cited

on pages 14, 16, 27, 33, 35 and 42.)

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: a paradigm for

designing efficient protocols. In Proceedings of the 1st ACM conference on Computer

and communications security, CCS ’93, pages 62–73, New York, NY, USA, 1993. ACM.

(Cited on pages 6 and 13.)

[CC02] Jae Choon and Jung-Hee Cheon. An identity-based signature from gap Diffie-Hellman

groups. In Yvo Desmedt, editor, Public Key Cryptography — PKC 2003, volume 2567

of Lecture Notes in Computer Science, pages 18–30. Springer Berlin / Heidelberg, 2002.

(Cited on page 1.)

[CFH+09] Yang Cui, Eiichiro Fujisaki, Goichiro Hanaoka, Hideki Imai, and Rui Zhang. Formal

security treatments for ibe-to-signature transformation: Relations among security no-

tions. IEICE Transactions, 92-A(1):53–66, 2009. (Cited on page 84.)

[CHK03] Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-key encryption

scheme. In Eli Biham, editor, Advances in Cryptology — EUROCRYPT 2003, volume

2656 of Lecture Notes in Computer Science, pages 646–646. Springer Berlin / Heidelberg,

2003. (Cited on pages 11, 15 and 84.)

BIBLIOGRAPHY 102

[CK13a] Sanjit Chatterjee and Chethan Kamath. A closer look at multiple-forking: Leveraging

(in)dependence for a tighter bound. Cryptology ePrint Archive, Report 2013/651, 2013.

http://eprint.iacr.org/. (Cited on page 99.)

[CK13b] Sanjit Chatterjee and Chethan Kamath. From selective-id to full-id IBS without random

oracles. In Benedikt Gierlichs, Sylvain Guilley, and Debdeep Mukhopadhyay, editors,

Security, Privacy, and Applied Cryptography Engineering, volume 8204 of Lecture Notes

in Computer Science, pages 172–190. Springer Berlin Heidelberg, 2013. (Cited on

pages 15, 85 and 86.)

[CKK13] Sanjit Chatterjee, Chethan Kamath, and Vikas Kumar. Galindo-Garcia identity-based

signature revisited. In Taekyoung Kwon, Mun-Kyu Lee, and Daesung Kwon, editors,

Information Security and Cryptology - ICISC 2012, volume 7839 of Lecture Notes in

Computer Science, pages 456–471. Springer Berlin / Heidelberg, 2013. Full version avail-

able in Cryptology ePrint Archive, Report 2012/646, http://eprint.iacr.org/2012/646.

(Cited on pages 14 and 35.)

[CMW12] Sherman S. M. Chow, Changshe Ma, and Jian Weng. Zero-knowledge argument for si-

multaneous discrete logarithms. Algorithmica, 64(2):246–266, 2012. (Cited on page 35.)

[Cor00] Jean-Sébastien Coron. On the exact security of full domain hash. In Mihir Bellare,

editor, Advances in Cryptology — CRYPTO 2000, volume 1880 of Lecture Notes in

Computer Science, pages 229–235. Springer Berlin / Heidelberg, 2000. (Cited on

pages 44, 45, 57 and 112.)

[CS06] Sanjit Chatterjee and Palash Sarkar. Generalization of the selective-id security model

for HIBE protocols. In Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin,

editors, Public Key Cryptography - PKC 2006, volume 3958 of Lecture Notes in Com-

puter Science, pages 241–256. Springer Berlin / Heidelberg, 2006. (Cited on page 84.)

[ElG85] Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete

logarithms. In George Robert Blakley and David Chaum, editors, Advances in Cryp-

tology, volume 196 of Lecture Notes in Computer Science, pages 10–18. Springer Berlin

Heidelberg, 1985. (Cited on page 16.)

http://eprint.iacr.org/

BIBLIOGRAPHY 103

[FLR+10] Marc Fischlin, Anja Lehmann, Thomas Ristenpart, Thomas Shrimpton, Martijn Stam,

and Stefano Tessaro. Random oracles with(out) programmability. In Masayuki Abe,

editor, Advances in Cryptology - ASIACRYPT 2010, volume 6477 of Lecture Notes

in Computer Science, pages 303–320. Springer Berlin / Heidelberg, 2010. (Cited on

pages 6 and 7.)

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and sym-

metric encryption schemes. In Michael Wiener, editor, Advances in Cryptology —

CRYPTO’ 99, volume 1666 of Lecture Notes in Computer Science, pages 79–79. Springer

Berlin / Heidelberg, 1999. (Cited on page 84.)

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identifi-

cation and signature problems. In Andrew Odlyzko, editor, Advances in Cryptology

— CRYPTO’ 86, volume 263 of Lecture Notes in Computer Science, pages 186–194.

Springer Berlin / Heidelberg, 1987. (Cited on pages 1, 6 and 16.)

[Gal05] David Galindo. Boneh-Franklin identity based encryption revisited. In Lúıs Caires,

Giuseppe Italiano, Lúıs Monteiro, Catuscia Palamidessi, and Moti Yung, editors, Au-

tomata, Languages and Programming, volume 3580 of Lecture Notes in Computer Sci-

ence, pages 102–102. Springer Berlin / Heidelberg, 2005. (Cited on page 44.)

[Gal06] David Galindo. A separation between selective and full-identity security notions for

identity-based encryption. In Marina Gavrilova, Osvaldo Gervasi, Vipin Kumar, C. Tan,

David Taniar, Antonio Laganá, Youngsong Mun, and Hyunseung Choo, editors, Com-

putational Science and Its Applications - ICCSA 2006, volume 3982 of Lecture Notes

in Computer Science, pages 318–326. Springer Berlin / Heidelberg, 2006. (Cited on

page 84.)

[GBL08] Sanjam Garg, Raghav Bhaskar, and Satyanarayana V. Lokam. Improved bounds on

security reductions for discrete log based signatures. In Proceedings of the 28th An-

nual conference on Cryptology: Advances in Cryptology, CRYPTO 2008, pages 93–107,

Berlin, Heidelberg, 2008. Springer-Verlag. (Cited on page 99.)

[GG09] David Galindo and Flavio Garcia. A Schnorr-like lightweight identity-based signature

scheme. In Bart Preneel, editor, Progress in Cryptology – AFRICACRYPT 2009, volume

BIBLIOGRAPHY 104

5580 of Lecture Notes in Computer Science, pages 135–148. Springer Berlin / Heidelberg,

2009. (Cited on pages 12, 14, 35, 44, 45, 48, 49, 55, 63, 66, 68, 99, 110, 120 and 124.)

[GH05] David Galindo and Ichiro Hasuo. Security notions for identity based encryption. Cryp-

tology ePrint Archive, Report 2005/253, 2005. (Cited on page 84.)

[GMR88] Shafi Goldwasser, Silvio Micali, and Ron Rivest. A digital signature scheme secure

against adaptive chosen-message attacks. SIAM Journal on Computing, 17(2):281–308,

1988. (Cited on pages 7 and 8.)

[GQ90] Louis Guillou and Jean-Jacques Quisquater. A “paradoxical” identity-based signature

scheme resulting from zero-knowledge. In Shafi Goldwasser, editor, Advances in Cryptol-

ogy — CRYPTO’ 88, volume 403 of Lecture Notes in Computer Science, pages 216–231.

Springer Berlin / Heidelberg, 1990. (Cited on page 1.)

[Her05] Javier Herranz. Deterministic identity-based signatures for partial aggregation. The

Computer Journal, 49(3):322–330, 2005. (Cited on page 1.)

[Hes03] Florian Hess. Efficient identity based signature schemes based on pairings. In Kaisa

Nyberg and Howard Heys, editors, Selected Areas in Cryptography, volume 2595 of

Lecture Notes in Computer Science, pages 310–324. Springer Berlin / Heidelberg, 2003.

(Cited on page 1.)

[HW09] Susan Hohenberger and Brent Waters. Realizing hash-and-sign signatures under stan-

dard assumptions. In Antoine Joux, editor, Advances in Cryptology - EUROCRYPT

2009, volume 5479 of Lecture Notes in Computer Science, pages 333–350. Springer

Berlin Heidelberg, 2009. (Cited on pages 12 and 91.)

[HWS+06] Anne Marie Hegland, Eli Winjum, Pal Spilling, Chunming Rong, and Oivind Kure.

Analysis of IBS for MANET security in emergency and rescue operations. In Advanced

Information Networking and Applications, 2006. AINA 2006. 20th International Con-

ference on, volume 2, pages 155–159, 2006. (Cited on page 1.)

[Kia07] Aggelos Kiayias. Cryptography: Primitives and protocols, 2007. (Cited on page 22.)

[KLS00] Stephen Kent, Charles Lynn, and Karen Seo. Secure border gateway protocol (S-BGP).

Selected Areas in Communications, IEEE Journal on, 18(4):582–592, 2000. (Cited on

page 1.)

BIBLIOGRAPHY 105

[KM07] Neal Koblitz and Alfred J. Menezes. Another look at ”provable security”. Journal of

Cryptology, 20:3–37, 2007. (Cited on pages 3 and 23.)

[KR00] Hugo Krawczyk and Tal Rabin. Chameleon signatures. In Proceedings of the Network

and Distributed System Security Symposium, NDSS 2000, San Diego, California, USA.

The Internet Society, 2000. (Cited on pages 12 and 85.)

[LBZ+10] Joseph K. Liu, Joonsang Baek, Jianying Zhou, Yanjiang Yang, and JunWen Wong. Ef-

ficient online/offline identity-based signature for wireless sensor network. International

Journal of Information Security, 9(4):287–296, 2010. (Cited on page 1.)

[Moh11] Payman Mohassel. One-time signatures and chameleon hash functions. In Alex

Biryukov, Guang Gong, and Douglas Stinson, editors, Selected Areas in Cryptography,

volume 6544 of Lecture Notes in Computer Science, pages 302–319. Springer Berlin /

Heidelberg, 2011. (Cited on page 85.)

[Oka93] Tatsuaki Okamoto. Provably secure and practical identification schemes and corre-

sponding signature schemes. In ErnestF. Brickell, editor, Advances in Cryptology —

CRYPTO’ 92, volume 740 of Lecture Notes in Computer Science, pages 31–53. Springer

Berlin Heidelberg, 1993. (Cited on page 16.)

[PS00] David Pointcheval and Jacques Stern. Security arguments for digital signatures and

blind signatures. Journal of Cryptology, 13:361–396, 2000. (Cited on pages 14, 16, 21

and 22.)

[PV05] Pascal Paillier and Damien Vergnaud. Discrete-log-based signatures may not be equiv-

alent to discrete log. In Bimal Roy, editor, Advances in Cryptology - ASIACRYPT

2005, volume 3788 of Lecture Notes in Computer Science, pages 1–20. Springer Berlin

Heidelberg, 2005. (Cited on pages 4 and 99.)

[RS11] V. Radhakishan and S. Selvakumar. Prevention of man-in-the-middle attacks using

id-based signatures. In Second International Conference on Networking and Distributed

Computing - ICNDC, 2011, pages 165 –169, 2011. (Cited on page 45.)

[Sch90] Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In Gilles

Brassard, editor, Advances in Cryptology — CRYPTO’ 89 Proceedings, volume 435 of

BIBLIOGRAPHY 106

Lecture Notes in Computer Science, pages 239–252. Springer Berlin / Heidelberg, 1990.

(Cited on page 16.)

[Sch91] Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal of Cryp-

tology, 4:161–174, 1991. 10.1007/BF00196725. (Cited on pages 7, 12, 14 and 45.)

[Seu12] Yannick Seurin. On the exact security of Schnorr-type signatures in the random oracle

model. In David Pointcheval and Thomas Johansson, editors, Advances in Cryptology –

EUROCRYPT 2012, volume 7237 of Lecture Notes in Computer Science, pages 554–571.

Springer Berlin / Heidelberg, 2012. (Cited on page 99.)

[Sha85] Adi Shamir. Identity-based cryptosystems and signature schemes. In George Blakley

and David Chaum, editors, Advances in Cryptology, volume 196 of Lecture Notes in

Computer Science, pages 47–53. Springer Berlin / Heidelberg, 1985. (Cited on page 1.)

[Sho01] Victor Shoup. OAEP reconsidered. In Joe Kilian, editor, Advances in Cryptology —

CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science, pages 239–259.

Springer Berlin / Heidelberg, 2001. (Cited on page 44.)

[Sho04] Victor Shoup. Sequences of games: a tool for taming complexity in security proofs,

2004. (Cited on page 3.)

[ST01] Adi Shamir and Yael Tauman. Improved online/offline signature schemes. In Joe

Kilian, editor, Advances in Cryptology — CRYPTO 2001, volume 2139 of Lecture Notes

in Computer Science, pages 355–367. Springer Berlin / Heidelberg, 2001. (Cited on

pages 12 and 91.)

[Teg03] Max Tegmark. Parallel universes. In John Barrow, Paul Davies, and Charles Harper Jr.,

editors, Science and Ultimate Reality: Quantum Theory, Cosmology, and Complexity,

pages 459–491. Cambridge University Press, 2003. (Cited on page 25.)

[TWZL08] Chiu C. Tan, Haodong Wang, Sheng Zhong, and Qun Li. Body sensor network security:

an identity-based cryptography approach. In Proceedings of the first ACM conference

on Wireless network security, WiSec ’08, pages 148–153, New York, NY, USA, 2008.

ACM. (Cited on page 1.)

[Wat05] Brent Waters. Efficient identity-based encryption without random oracles. In Ronald

Cramer, editor, Advances in Cryptology – EUROCRYPT 2005, volume 3494 of Lecture

BIBLIOGRAPHY 107

Notes in Computer Science, pages 557–557. Springer Berlin / Heidelberg, 2005. (Cited

on pages 6 and 84.)

[XW12] Min Xie and Libin Wang. One-round identity-based key exchange with perfect for-

ward security. Information Processing Letters, 112(14–15):587 – 591, 2012. (Cited on

page 45.)

Appendices

108

Appendix A

Galindo-Garcia IBS

A.1 The Fixed Security Argument

Let A be an adversary against GG-IBS in EU-ID-CMA model. Eventually, A outputs an attempted

forgery of the form σ = (A, b,R). Let E be the event that σ is a valid signature and R was contained

in an answer of the signature oracle Os. Let NE be the event that σ is a valid signature and R was

never part of an answer of Os. Galindo and Garcia construct algorithms B1 (resp. B2) that break

the DLP in case of event E (resp. NE). We describe the modified reductions below.

A.1.1 Reduction B1

B1 takes as argument the description of a group (G, p, g) and a challenge gα with α
U←− Zp and tries

to extract the discrete logarithm α. The environment is simulated as shown below.

B1.1 B1 picks î
U←− {1, . . . , qG},1 where qG is the maximum number of queries that the adversary A

makes to the G-oracle. Let îd (the target identity) be the îth distinct identity queried to the

G-oracle. Next, B1 chooses z
U←− Zp and sets (mpk, msk) := ((G, g, p,G,H, gz), z), where G, H

are descriptions of hash functions modelled as random oracles. As usual, B1 simulates these

oracles with the help of two tables LG and LH containing the queried values along with the

answers given to A.

B1.2 Every time A queries the key extraction oracle OE , for user id, B1 chooses c, y
U←− Zp, sets

R := g−zcgy and adds 〈R, id, c〉 to the table LH. Then it returns the key (y,R) to A.

1The number of different identities involved in the G-oracle query, i.e. n, can be at most qG. Hence, B1 has to
choose one index from this set.

109

Appendix A. Galindo-Garcia IBS 110

B1.3 When A queries the signature oracle Os with (id,m) where id 6= îd, B1 simply computes

id’s secret key as described in the previous bullet. Then it invokes the signing algorithm S

and returns the produced signature to A.

B1.4 When A queries the signature oracle Os with (id,m) where id = îd, B1 chooses b, d
U←− Zp,

sets B := gb, R := gα, c := H(id, R), A := B(gαgzc)−d and programs the random oracle in

such a way that d := G(id, A,m). Then it returns the signature (A, b,R) to A.

B1.5 B1 invokes the algorithm MW1(mpk) as described in Lemma 1 (§4 in [GG09]). Here algorithm

W is simply a wrapper that takes as explicit input, the answers from the random oracles.

Then it calls A and returns its output together with two integers I, J . These integers are the

indices of A’s queries to the random oracles G, H with the target identity îd.

B1.6 In this way we get two forgeries of the form σ0 = (id,m, (A, b0, R)) and σ1 = (id,m, (A, b1, R)).

Let d0 be the answer from the G-oracle given to A in the first simulation, s0I0 in MW1 and let

d1 be the second answer s1I0 . If the identity id is not equal to the target identity îd then B1

aborts. Otherwise it terminates and outputs the attempted discrete logarithm

α =
b0 − b1
d0 − d1

− zc.

A.1.2 Reduction B2

It takes as argument, the description of a group (G, p, g) and a challenge gα with α
U←− Zp and

outputs the discrete logarithm α. To do so, it will invoke A simulating the environment as shown

below.

B2.1 At the beginning of the experiment, B2 sets the master public key mpk := (G, p, g,G, H) and

msk := (gα), where G, H are description of hash functions modelled as random oracles. As

usual, B2 simulates these oracles with the help of two tables LG and LH containing the queried

values together with the answers given to A.

B2.2 Every time A queries the key extraction oracle OE , for user id, B2 chooses c, y
U←− Zp, sets

R := g−αcgy and adds 〈R, id, c〉 to the table LH. Then it returns the key (y,R) to A.

B2.3 When A queries the signature oracle Os with (id,m), B2 simply computes id’s secret key

as described in the previous step. Then it computes a signature by calling S, adding the

Appendix A. Galindo-Garcia IBS 111

respective call to the G-oracle, ((id, ga,m), d) to the table LG and gives the resulting signature

to the adversary.

B2.4 B2 invokes the algorithm MW3(mpk). In this way either B2 aborts prematurely or we get,

for some identity id, some message m and some R, four forgeries (id,m, (Ak, bk, Rk)), k :=

0, . . . , 3. Now, two situations may arise

(a) If R3 = R2 = R1 = R0 (H < G) then, the signatures will be of the form

{b0 = logA0 + (logR+ c0α)d0, b1 = logA0 + (logR+ c0α)d1,

b2 = logA2 + (logR+ c2α)d2, b3 = logA2 + (logR+ c2α)d3}
(A.1)

B2 solves for α using the equation

α =
(b0 − b1)(d2 − d3)− (b2 − b3)(d0 − d1)

(c0 − c1)(d0 − d1)(d2 − d3)
. (A.2)

(b) Else, if A3 = A2 = A1 = A0 (G < H) then, the signatures will be of the form

{b0 = logA+ (logR0 + c0α)d0, b1 = logA+ (logR0 + c1α)d0,

b2 = logA+ (logR2 + c2α)d2, b3 = logA+ (logR2 + c3α)d2}.
(A.3)

B2 solves for α using the equation

α =
b0 − b1

d0(c0 − c1)
. (A.4)

A.2 A Security Argument without Wrappers

The reductions in the subsequent sections are described in two steps. In the first step, called

“Handling the queries”, we describe the protocol set-up and the methods in which adversarial

queries–signature, extract and random oracle queries, are to be handled. This gives us sufficient

know-how to simulate the protocol environment. In the second step, called “Solving the DLP”, we

describe how the reductions use forking algorithms to solve the underlying hard problem, which

in this case is the DLP. The reductions use the forking algorithm simply as a black-box to get

hold of the forgeries. The actual simulation is handled by the wrapper algorithm Y in the forking

algorithms, according to the plan laid down by the reductions in the first step. For details on how

Appendix A. Galindo-Garcia IBS 112

the forking algorithms work, see §2.4.

Simulating the random oracles. A random oracle query is defined to be fresh if it is the first

query involving that particular input. If a query is not fresh for an input, in order to maintain

consistency, the random oracle has to respond with the same output as in the previous query on

that input. We say that a fresh query does not require programming if the simulator can simply

return a random value as the response. The crux of most security arguments involving random

oracles, including ours, is the way the simulator answers the queries that require programming.

In our case, random oracle programming is used to resolve the circularity involved while dealing

with the implicit random oracle queries. A random oracle query is said to be implicit if it is not

an explicit query from the adversary or the simulator. As usual, to simplify the book-keeping, all

implicit random oracle queries involved in answering the extract and signature queries are put into

the account of A.

A.2.1 Reduction R1

R1 uses the so-called “partitioning strategy”, first used by Coron in the security argument of FDH

[Cor00]. The basic idea is to divide the identity-space I into two disjoint sets, Iε and Is, depending

upon the outcome of a biased coin. The simulator is equipped to respond to both extract and

signature queries on identities from Iε. But it fails if the adversary does an extract query on any

identity from Is; it can answer only to signature queries on identities from Is. Finally, the simulator

hopes that the adversary produces a forgery on an identity from Is. The optimal size of the sets is

determined on analysis.

In R1 the problem instance is embedded in the randomiser R, depending on the outcome of a

biased coin. As R1 maintains a unique R for each identity, the structure of R decides whether that

identity belongs to Iε or to Is. The details follow.

Let ∆ := (G, p, g, gα) be the given DLP instance. R1 sets z
U←− Zp as the master secret key. The

master public key mpk := (G, p, g, gz,H,G) are released to the adversary. The hash functions H

and G are modelled as random oracles. This is done with the aid of two tables, LH and LG.

Appendix A. Galindo-Garcia IBS 113

A.2.1.1 Handling the Queries

H-oracle query. LH contains tuples of the form

〈R, r, id, c, β〉 ∈ G × Zp ∪ {⊥} × {0, 1}∗ × Zp × {0, 1, φ}.

Here, (R, id) is the query to the H-oracle and c is the corresponding output. Therefore, an

oracle query H(R, id) is fresh if there exists no tuple 〈Ri, ri, idi, ci, βi〉 in LH such that (idi =

id) ∧ (Ri = R). If such a tuple exists, then the oracle has to return ci as the output.

The r-field is used to store additional information related to the R-field. The tuples corre-

sponding to the explicit H-oracle queries, made by A, are tracked by storing ‘⊥’ in the r-field. This

indicates that R1 does not have any additional information regarding R. In these tuples, the β-field

is irrelevant and this is indicated by storing ‘φ’. In tuples with r 6= ⊥, the field β indicates whether

the DLP instance is embedded in R or not. If β = 0 then R = (gα)r for some known r ∈ Zp, which

is stored in the r-field. On the other hand, β = 1 implies R = gr for some known r ∈ Zp, which is,

again, stored in the r-field. Therefore, the r-field stores one of the values: i) ‘⊥’, or ii) log gR, or

iii) r, if R = (gα)r. As a result, LH can contain three types of tuples determined by the content of

r-field and β-field, viz.

1. r = ⊥: These tuples correspond to the explicit H-oracle queries made by A.

2. r 6= ⊥ ∧ β = 0: These tuples correspond to identities in Is. They are added by R1 while

answering the signature queries. As the DLP instance is embedded in R, extract query fails

on these identities.

3. r 6= ⊥ ∧ β = 1: These tuples correspond to identities in Iε. They are added by R1 while

answering signature or extract queries.

We now explain how the fresh H-oracle queries are handled.

H(R, id): The query may be

(i) H1, Explicit query made by A: In this case R1 returns c
U←− Zp as the output. 〈R,⊥, id, c, φ〉

is added to LH.

(ii) H2, Explicit query made by R1: As in the previous case, R1 returns c
U←− Zp as the

output. As R1 knows r = log gR, 〈R, r, id, c, 1〉 is added to LH.

Appendix A. Galindo-Garcia IBS 114

(iii) H3, Implicit query by R1 in order to answer a signature query made by A: See Sign (iii)

on how to program the random oracle in this situation.

G-oracle query. LG contains tuples of the form

〈id, A,m, d〉 ∈ {0, 1}∗ ×G × {0, 1}∗ × Zp.

Here, (id, A,m) is the query to the G-oracle and d is the corresponding output. Therefore, a

random oracle query G(id, A,m) is fresh if there exists no tuple 〈idi, Ai,mi, di〉, in LG such that

(idi = id) ∧ (Ai = A) ∧ (mi = m). If such a tuple exists, then the oracle has to return di as the

output.

We now explain how the fresh G-oracle queries are handled.

G(id, A,m): The query may be

(i) G1, Explicit query made by the either A or R1: In this case R1 returns d
U←− Zp as the

output. 〈id, A,m, d〉 is added to LG.

(ii) G2, Implicit query by R1 in order to answer a signature query made by A: See Sign (i),

(iii) on how to program the random oracle in this situation.

Remark 20. In the case of the implicit queries H3 and G2, R1 has to program the respective random

oracles in an appropriate way to deal with the circularity involved. For ease of understanding, they

are dealt with in their respective sections.

Now that R1 can handle the random oracle queries, the extract and signature queries are

answered as follows.

Extract query. R1 first checks if id has an associated R. This is done by searching for tuples

〈Ri, ri, idi, ci, βi〉 in LH with (idi = id)∧ (ri 6= ⊥). If such a tuple exists, R1 checks for the value of

βi in the tuple. βi = 0 implies the identity belongs to Is and consequently the extract query fails,

leading to an abort, abort1,1. On the other hand, βi = 1 implies that there was a prior extract

query on id and also that the identity belongs to Iε. R1 generates the secret key (same as in prior

extract query) using the information available in the tuple. On the other hand, if such a tuple does

not exist, R1 selects a fresh r and assigns id to Iε. R1 has this freedom since the adversary cannot

forge on this identity. This is captured by the oracle OE shown below.

Appendix A. Galindo-Garcia IBS 115

OE(id): If there exists a tuple 〈Ri, ri, idi, ci, βi〉 in LH such that (idi = id) ∧ (ri 6= ⊥)

(i) If βi = 0, R1 aborts (abort1,1).

(ii) Otherwise, βi = 1 and R1 returns usk := (ri + zci, Ri) as the secret key for id.

Otherwise

(iii) R1 chooses r
U←− Zp, sets R := gr and asks the H-oracle for c := H(R, id). It returns

usk := (r + zc,R) as the secret key.

Signature query. As in the extract query, R1 checks the identity for an associated R by searching

tuples 〈Ri, ri, idi, ci, βi〉 in LH with (idi = id) ∧ (ri 6= ⊥). If such a tuple exists, the identity has

been assigned to either of Iε or Is, determined by the value of βi. If such a tuple does not exist,

then the identity is unassigned and R1 assigns the identity to either Iε or Is by tossing a biased

coin β. If the outcome is 0, id is assigned to Is; else it is assigned to Iε. Identities assigned to Is
have the problem instance gα embedded in the randomiser R. Although the private key cannot

be calculated, an algebraic technique, similar to one adopted by Boneh-Boyen in [BB04a], coupled

with random oracle programming enables us to give the signature. On the other hand, signature

queries involving identities from Iε are answered by first generating usk as in the extract query and

then invoking S. This is captured by the oracle Os described below.

Os(id,m): If there exists a tuple 〈Ri, ri, idi, ci, βi〉 in LH such that (idi = id) ∧ (ri 6= ⊥)

(i) If βi = 0, R1 selects s, d
U←− Zp and sets A := gs(gα)−rid. Then (id, A,m, d) is added to

LG (Deferred case G2)
2. The signature returned is

σ := (A, s+ zcd,Ri).

(ii) Otherwise, βi = 1 and the secret key for id is usk = (y,Ri), where y = ri + zci and

Ri = gri . R1 selects a
U←− Zp, sets A := ga and asks G-oracle for d := G(id, A,m). The

signature returned is

σ := (A, a+ yd,Ri).

2If there exists a tuple 〈idi, Ai,mi, di〉 in LG with idi = id ∧ Ai = A ∧ mi = m but di 6= d then G(id, A,m)
cannot be set to d. In that case R1 can simply choose a fresh set of randomisers s, d and repeat the process.

Appendix A. Galindo-Garcia IBS 116

Otherwise, R1 tosses a coin β with a bias δ (i.e, Pr[β = 0]=δ). The value of δ will be quantified

on analysis.

(iii) If β = 0, R1 selects c, d, s, r
U←− Zp and sets R := (gα)r, A := gs(gα)−rd. Next, it adds

〈(gα)r, r, id, c, 0〉 to LH (Deferred case H3) and 〈id, A,m, d〉 to LG (Deferred case G2).
3

The signature returned is

σ := (A, s+ zcid,R).

(iv) Otherwise, β = 1 and R1 selects a, r
U←− Zp and sets A := ga, R := gr. It then asks the

respective oracles for c := H(R, id) and d := G(id, A,m). The signature returned is

σ := (A, a+ (r + zc)d,R).

Correctness. For β = 0, the signature given by R1 is of the form (A, b,R), where A = gs(gα)−rd,

b = s+ zcd and R = (gα)r. R1 also sets c := H(R, id) and d := G(id, A,m). The signature verifies

as shown below.

gb = gs+zcd

= gs−αrd+αrd+zcd

= g(s−αrd)g(αr+zc)d

= gs(gα)−rd((gα)r(gz)c)d

= A(R(gz)c)d.

For β = 1, the signatures are generated as in the protocol. Therefore they fundamentally verify.

To conclude the queries section, we calculate the probability of the event ¬abort1,1. R1 aborts

only when A does an extract query on an identity from Is, i.e. an identity with β = 0. Therefore,

R1 does not abort if all the extract queries are from Iε and we have

P(¬abort1,1) = (1− δ)qε . (A.5)

Appendix A. Galindo-Garcia IBS 117

Q0I0+1 Q0q σ̂0 = (Â, b̂0, R̂0) //round 0

Q01 Q02 Q0I0

Q1I0+1 Q1q σ̂1 = (Â, b̂1, R̂1) //round 1

s01

s0I0

s1I0

s0q

s1q

Figure A.1: Successful forking by R1. Q
0
I0

denotes the target G-query G(îd, Â, m̂).

A.2.1.2 Solving the DLP

R1 now uses the general forking algorithm FW (see §2.4 for details on the working of FW) to solve

the DLP challenge. It invokes FW on the given DLP instance ∆,4 with the G-oracle involved in

the replay attack. If FW fails, so does R1 and it aborts (abort1,2). On the other hand, if FW is

successful, it gets two valid forgeries

{σ̂0 = (Â, b̂0, R̂0), σ̂1 = (Â, b̂1, R̂1)}

on (îd, m̂) (see Figure A.1). R1 now retrieves two tuples

ti := 〈Ri, ri, idi, ci, βi〉 | (idi = îd) ∧ (Ri = R̂0) and

tj := 〈Rj , rj , idj , cj , βj〉 | (idj = îd) ∧ (Rj = R̂1)

from LH. R1 aborts (abort1,3) if both βi and βj are equal to 1. Otherwise it solves for α as shown

below. Note that d0 and d1 represent the value of G(îd, Â, m̂) in the two rounds, i.e., d0 = s0I0 and

d1 = s1I0 . Let â := log gÂ.

(i) (βi = 1) ∧ (βj = 0): In this case, R̂0 = gri and R̂1 = grjα. Thus we have b̂0 = â+ (ri + zci)d0

3R1 chooses different randomisers if there is a collision as explained in Footnote 2.
4In reductions involving the forking algorithm, the problem instance is usually embedded in mpk. Therefore the

forking algorithm FW is invoked on mpk. But in case of R1, the master secret key is chosen by R1 itself. The problem
instance (gα) is embedded as part of answers to signature queries. Therefore, R1 invokes FW on ∆ while (msk, mpk)

is considered to be part of ρ.

Appendix A. Galindo-Garcia IBS 118

and b̂1 = â+ (rjα+ zcj)d1.

b̂0 − b̂1 = (rid0 − rjαd1) + z(cid0 − cjd1),

α =
z(cid0 − cjd1) + rid0 − (b̂0 − b̂1)

rjd1
.

(A.6)

(ii) (βi = 0)∧ (βj = 1): In this case, R̂0 = griα and R̂1 = grj . Thus we have b̂0 = â+ (riα+ zci)d0

and b̂1 = â+ (rj + zcj)d1.

b̂1 − b̂0 = (rjd1 − riαd0) + z(cjd1 − cid0),

α =
z(cjd1 − cid0) + rjd1 − (b̂1 − b̂0)

rid0
.

(A.7)

(iii) (βi = 0)∧(βj = 0): In this case, R̂0 = griα and R̂1 = grjα. Thus we have b̂0 = â+(riα+zci)d0

and b̂1 = â+ (rjα+ zcj)d1.

b̂0 − b̂1 = α(rid0 − rjd1) + z(cid0 − cjd1),

α =
(b̂0 − b̂1)− z(cid0 − cjd1)

(rid0 − rjd1)
.

(A.8)

Remark 21. The equations (A.6), (A.7) and (A.8) hold even if R̂1 = R̂0 (and consequently rj = ri

and cj = ci). Note that this can happen if the adversary makes the random oracle query H(R̂0, îd)

before the query G(îd, Â, m̂) in round 0. Hence, the order in which A makes the aforementioned

random oracle queries is not relevant.

Structure of R. The event E guarantees the existence of the tuple ti in LH. As A cannot make

an extract query on îd, the choice of R̂i must have been made during a signature query, where the

structure of R is determined by the coin β. Therefore

R̂i =

gr̂iα If βi = 0

gr̂i Otherwise

This, in turn, is determined by the bias in β, i.e. δ. A similar argument holds for tj . R1 is

successful in solving the DLP if either of the forgeries have β = 0. If (βi = 1) ∧ (βj = 1), R1 fails

and does abort1,3. We conclude by calculating the probability of abort1,3 provided abort1,2 has not

Appendix A. Galindo-Garcia IBS 119

occurred. It is same as the probability with which (βi = 1) ∧ (βj = 1), i.e.

P(abort1,3 | ¬abort1,2) = (1− δ)2. (A.9)

Let gfrk be the probability with which FW is successful. Since abort1,2 occurs if FW fails, we have

P(¬abort1,2) = gfrk. (A.10)

A.2.1.3 Analysis

The probability analysis is done in terms of the aborts abort1,1, abort1,2 and abort1,3. From

(A.5), (A.10) and (A.9), we have P(¬abort1,1) = (1 − δ)qε , P(¬abort1,2) = gfrk and P(abort1,3 |

¬abort1,2) = (1− δ)2. FW is successful during round 0 if there is no abort during the query phase

(¬abort1,1) and A produces a valid forgery. We denote this probability by acc1. Thus

acc1 ≥ P(¬abort1) · ε

≥ (1− δ)qε · ε.

Applying the GF lemma (Lemma 2.4) with |S| = p and q = qG, we get

gfrk ≥ acc1 ·
(

acc1
qG

− 1

p

)
≥ (1− δ)qεε ·

(
(1− δ)qεε

qG

− 1

p

)
.

If we assume p� 1, the above expression approximates to

gfrk ≥ (1− δ)2qεε2

qG

.

Appendix A. Galindo-Garcia IBS 120

Now, R1 is successful in solving DLP if neither of the aborts, abort1,2 and abort1,3, occur. Thus

the advantage it has is

ε1 = P(¬abort1,3 ∧ ¬abort1,2)

= P(¬abort1,3 | ¬abort1,2) · P(¬abort1,2)

≥ (1− (1− δ)2) · gfrk

≥ (2δ − δ2)(1− δ)2qεε2

qG

.

(A.11)

Assuming p� 1, (3.9) attains maximum value at the point δ =
(

1−
√
qε/(qε + 1)

)
, at which

ε1 ≥
ε2

exp(1)qGqε
.

Here, exp is the base of natural logarithm.

Remark 22. The above reduction is tighter than the reduction B1 given by Galindo and Garcia

[GG09]. This can be attributed to two reasons: i) R1 using the GF Algorithm FW instead of the

MF Algorithm MW1; and ii) B1 in [GG09] randomly chooses one of the identities involved in the

G-oracle query as the target identity (refer to §3.2.2.1) which contributes a factor of qG to the

degradation in B1. In contrast, we apply Coron’s technique in R1 to partition the identity space in

some optimal way.

Time complexity. If τ is the time taken for an exponentiation in G then the time taken by R1

is t1 ≤ t + 2(qε + 3qs)τ . It takes at most one exponentiation for answering the extract query and

three exponentiations for answering the signature query. This contributes the (qε + 3qs)τ factor in

the running time. The factor of two comes from the forking algorithm, since it involves simulating

the adversary twice.

A.2.2 Reduction R2

The reduction R2 is similar in some aspects to the (incomplete) reduction argument B2 in [GG09].

However, a major difference is that R2 uses the multiple-forking algorithm MW1 instead of MW3 to

solve the DLP challenge. Therefore, only one forking is involved leading to a much tighter reduction

than B2. The details follow.

Appendix A. Galindo-Garcia IBS 121

Let ∆ := (G, p, g, gα) be the given DLP instance. R2 sets mpk := (G, p, g, gα,H,G) as the master

public key and releases it to A. Note that R2 does not know the master secret key msk, which is α,

the solution to the DLP challenge. The hash functions H and G are modelled as random oracles.

This is done with the aid of two tables, LH and LG.

A.2.2.1 Handling the Queries

H-oracle query. LH contains tuples of the form

〈R, id, c, y〉 ∈ G × {0, 1}∗ × Zp × Zp ∪ {⊥}.

Here, (R, id) is the query to the H-oracle and c the corresponding output. The y-field stores

either the corresponding component of the secret key for id or ‘⊥’ if the field is invalid. A random

oracle query H(R, id) is fresh if there exists no tuple 〈Ri, idi, ci, yi〉 in LH such that (idi = id) ∧

(Ri = R). If such a tuple exists, then the oracle has to return ci as the output. We now explain

how the H-oracle queries are answered.

H(R, id): The query may be

(i) H1, Explicit query made by A: In this case R2 returns c
U←− Zp as the output. 〈R, id, c,⊥〉

is added to LH.

(ii) H2, Implicit query by R2 in order to answer an extract query made by A: See Extract

(ii) on how to program the random oracle in this situation.

G-oracle query. LG has the same structure as in R1 (See §A.2.1.1). The queries to G-oracle

are handled as shown below.

G(id, A,m): R2 returns d
U←− Zp as the output. 〈id, A,m, d〉 is added to LG.

Signature and Extract queries. Since R2 does not know the master secret key α, it has to use

the algebraic technique used in R1 to come up with the secret key corresponding to an identity.

The choice of R and c enables it to give the secret key. The circularity involved in this choice is

resolved by programming the H-oracle appropriately. Signature queries are answered by generating

usk as in the extract query, followed by calling S.

Extract query, OE(id):

Appendix A. Galindo-Garcia IBS 122

(i) If there exists a tuple 〈Ri, idi, ci, yi〉 in LH such that (idi = id) ∧ (yi 6= ⊥), R2 returns

usk := (yi, Ri) as the secret key.

(ii) Otherwise, R2 chooses c, y
U←− Zp, setsR := (gα)−cgy and adds 〈R, id, c, y〉 to LH(Deferred

case H2). It returns usk := (y,R) as the secret key.

Signature query, Os(id,m):

(i) If there exists a tuple 〈Ri, idi, ci, yi〉 in LH such that (idi = id) ∧ (yi 6= ⊥), then

usk = (yi, Ri). R2 now uses the knowledge of usk to invoke S and returns the signature.

(ii) Otherwise, R2 generates usk as in Extract(ii) and invokes S to return the signature.

We conclude the queries section with the remark that R2 never aborts during the query stage.

A.2.2.2 Solving the DLP

Q0I0+1 Q0q σ̂0 = (Â, b̂0, R̂) //round 0

Q01 Q02 Q0J0
Q0J0+1 Q0I0

Q1I0+1 Q1q σ̂1 = (Â, b̂1, R̂) //round 1

s01 s0J0

s0I0

s1I0

s0q

s1q

Figure A.2: Successful forking by R2. Q
0
J0

denotes the target G-query G(îd, Â, m̂) while Q0I0 denotes

the target H-query H(R̂, îd).

R2 now uses the multiple-forking algorithm MW1 (see §2.5 for details on the working of MWn)

to solve the DLP challenge. It invokes MW1 on mpk, with both H and G-oracle involved in the

replay attack. If MW1 fails, so does R2 and it aborts (abort2,1). On the other hand, if MW1 is

successful, R2 gets two valid, non-trivial forgeries {σ̂0, σ̂1} on (îd, m̂) with σ̂i := (Â, b̂i, R̂) for each

i = 0, 1 and

{b̂0 = â+ (r̂ + αc0)d̂, b̂1 = â+ (r̂ + αc1)d̂} (A.12)

where â := log gÂ and r̂ := log gR̂. Note that c0 and c1 represent the value of H(R̂, îd) in the

two rounds, i.e., c0 = s0I0 and c1 = s1I0 . The event F guarantees that A makes the G-oracle query

Q0J0
: G(îd, Â, m̂), before the H-oracle query Q0I0 : H(R̂, îd). Finally it outputs the solution to the

Appendix A. Galindo-Garcia IBS 123

DLP instance,

α =
b̂0 − b̂1

d̂(c0 − c1)
. (A.13)

Structure of the forgeries. Now we justify the structure of the component b of the forgeries

given in (A.12). Recall that the signature queries are answered by doing an extract query on the

identity followed by calling S. Therefore, the resultant secret keys are of the form usk = (y,R),

where R = (gα)−cgy and we have r = −αc+y. If a forgery is produced using the same R as given by

R2 as part of the signature query on id, then b will be of the form b = a+(−αc+y+αc)d = a+yd.

Therefore, it will not contain the solution to the DLP challenge α, and such forgeries are of no use

to R2. But the event ¬E guarantees that A does not forge using an R which was given as part of

the signature query on id and hence, for the forgery to be valid b will necessarily be of the form:

b = a+ (r + αc)d. (A.14)

We conclude with the remark that the event abort2,1 does not occur if the multiple-forking

algorithm is successful (let this probability be mfrk). Therefore

P(¬abort2,1) = mfrk. (A.15)

A.2.2.3 Analysis

The only abort involved in R2 is abort2,1, which occurs when MW1 fails. Therefore R2 is successful

if MW1 is and from (A.15) we have

ε2 = P(¬abort2,1) = mfrk.

We denote the probability with which MW1 is successful during round 0 as acc2. Since there

is no abort involved during query phase, MW1 is successful during round 0 if A produces a valid

forgery, i.e. acc2 = ε. Applying the MF lemma (Lemma 6) with n := 1, q := qH + qG and |S| = p,

we get

ε2 = mfrk ≥ acc2 ·
(

acc2
(qH + qG)2

− 1

p

)
≥ ε

(
ε

(qH + qG)2
− 1

p

)
.

Appendix A. Galindo-Garcia IBS 124

Time complexity. Drawing analogy from the analysis of time complexity of R1, the time taken

by R2 is easily seen to be bounded by t2 ≤ t+ 2(2qε + 3qs)τ .

A.2.3 Reduction R3

The approach used in R3 is the same as in the reduction B2 in [GG09]. Let ∆ := (G, p, g, gα) be

the given DLP instance. R3 sets mpk := (G, p, g, gα,H,G) as the master public key and releases it

to A. As in R2, R3 does not know the master secret msk, which is α. The hash functions H and G

are modelled as random oracles. This is done with the aid of two tables, LH and LG.

A.2.3.1 Handling the Queries

The queries are handled in the same way as in R2. So we refer to §A.2.2.1 for details.

A.2.3.2 Solving the DLP

Q0I0+1 Q0q σ̂0 = (Â0, b̂0, R̂) //round 0

Q0J0+1 Q0I0

Q1I0+1 Q1q σ̂1 = (Â0, b̂1, R̂) //round 1

Q01 Q02 Q0J0

Q2I0+1 Q2q σ̂2 = (Â1, b̂2, R̂) //round 2

Q2J0+1 Q2I0

Q3I0+1 Q3q σ̂3 = (Â1, b̂3, R̂) //round 3

s01

s0J0

s2J0

s0I0

s1I0

s0q

s1q

s2I0

s3I0

s2q

s3q

Figure A.3: Successful multiple forkings by R3. Q
0
J0

denotes the target H-query H(R̂, îd); Q0I0 (resp

Q2I0) denotes the target G-query G(îd, Â0, m̂) (resp G(îd, Â1, m̂)).

R3 now uses the multiple-forking algorithm MW3, to solve the DLP challenge. It invokes MW3

on mpk, with both H and G-oracle involved in the replay attack. If MW3 fails, so does R3 and it

aborts (abort3,1). On the other hand, if MW3 is successful (see Figure A.3), R3 gets four valid

Appendix A. Galindo-Garcia IBS 125

forgeries

σ̂0 = (Â0, b̂0, R̂) , σ̂1 = (Â0, b̂1, R̂),

σ̂2 = (Â1, b̂2, R̂) and σ̂3 = (Â1, b̂3, R̂)
(A.16)

with σ̂0 and σ̂1 on (îd, m̂0) and σ̂2 and σ̂3 on (îd, m̂1), where

b̂0 = â0 + (r̂ + αc0)d0 , b̂1 = â0 + (r̂ + αc0)d1,

b̂2 = â1 + (r̂ + αc1)d2 and b̂3 = â1 + (r̂ + αc1)d3,
(A.17)

where r̂ := log gR̂, âi := log gÂi. Note that c0 and c1 represent the value of H(R̂, îd) in the

H-oracle forks; d0 and d1 represent the value of G(îd, Â0, m̂) in the first two rounds; d2 and d3

represent the value of G(îd, Â1, m̂) in the last two runs. Finally it outputs the solution to the DLP

challenge,

α =
(b̂0 − b̂1)(d2 − d3)− (b̂2 − b̂3)(d0 − d1)

(c0 − c1)(d0 − d1)(d2 − d3)
. (A.18)

We conclude with the remark that the event abort3,1 does not occur if the multiple-forking

algorithm is successful (let this probability be mfrk). Therefore

P(¬abort3,1) = mfrk. (A.19)

A.2.3.3 Analysis

As in R2, the only abort involved in R3 is abort3,1, which occurs when MW3 fails. Therefore R3 is

successful if MW3 is and from (A.19) we have

ε3 = P(¬abort3,1) = mfrk.

We denote the probability with which MW3 is successful during the first round as acc3. Since

there is no abort involved during query phase, MW3 is successful during the first round if A produces

a valid forgery, i.e. acc3 = ε. Applying the MF lemma (Lemma 6) with n = 3, q = qH + qG and

Appendix A. Galindo-Garcia IBS 126

|S| = p, we have

ε3 = mfrk ≥ acc3 ·
(

acc33
(qH + qG)6

− 3

p

)
≥ ε

(
ε4

(qH + qG)6
− 3

p

)
.

Time complexity. The time taken by R3 is easily seen to be bounded by t3 ≤ t+ 4(2qε + 3qs)τ .

A.3 Reduction R′1

Let ∆ := (G, p, g, gα) be the given DLP instance. The reduction involves invoking the GF Algorithm

on the wrapper Y as shown in Algorithm 7. As a result, it obtains a set of two congruences in

two unknowns and solves for α.

Algorithm 7 Reduction R′1(∆)

Select z
U←− Z∗p as the msk and set mpk := (G, g, p, gz).

(op, σ0, σ1)
$←− FY((mpk, msk), gα)

if (op = 0) then ⊥ //abort1,2

Parse σi as (b̂i, ci, ri, βi, di).

Let β := β0, c := c0 and r := r0

if β = 0 then return ((b̂0 − b̂1)− zc(d0 − d1))
/
r(d0 − d1)

else return ⊥ //abort1,3

end if

The Wrapper

Suppose that q := qG and S := Zp. Y takes as input the master keys (mpk, msk), the problem

instance gα and s1, . . . , sq. It returns a pair (I, σ) where I is an integer that refers to the target

G-query and σ is the side-output. In order to track the index of the current G-oracle query, Y

maintains a counter `, initially set to 1. It also maintains a table LH (resp. LG) to manage the

random oracle H (resp. G). Y initiates the EU-ID-CMA game by passing mpk as the challenge master

public key to the adversary A. The queries by A are handled as per the following specifications.

(a) Random oracle query, H(id, R): LH contains tuples of the form

〈id, R, c, r, β〉 ∈ {0, 1}∗ ×G × Zp × Zp ∪ {⊥} × {0, 1, φ}.

Appendix A. Galindo-Garcia IBS 127

Here, (id, R) is the query to the H-oracle and c is the corresponding output. Therefore, a query

H(id, R) is fresh if there exists no tuple 〈idi, Ri, ci, ri, βi〉 in LH such that (idi = id)∧(Ri = R).

If such a tuple exists, then the oracle has to return the corresponding ci as the output. The

role of the r and β-field is the same as in R1. We now explain how the fresh H-oracle queries

are handled. The query may be

(i) H1, Explicit query made by A: In this case Y returns c
U←− Zp as the output. 〈id, R, c,⊥, φ〉

is added to LH.

(ii) H2, Explicit query made by Y: As in the previous case, Y returns c
U←− Zp as the output.

As Y knows r = log gR, 〈id, R, c, r, 1〉 is added to LH.

(iii) H3, Implicit query by Y in order to answer a signature query made by A: See step (iii) of

Signature query on how to program the random oracle in this situation.

(b) Random oracle query, G(m,A, c): LG contains tuples of the form

〈m,A, c, d, `〉 ∈ {0, 1}∗ ×G × Zp × Zp × Z+.

Here, (m,A, c) is the query to the G-oracle and d is the corresponding output. The index of

the query is stored in the `-field. Therefore, a random oracle query G(m,A, c) is fresh if there

exists no tuple 〈mi, Ai, ci, di, `i〉, in LG such that (mi = m) ∧ (Ai = A) ∧ (ci = c). If such a

tuple exists, then the oracle has to return the corresponding di as the output. We now explain

how the fresh G-oracle queries are handled. The query may be

(i) G1, Explicit query made by either A or Y: In this case Y returns d := s` as the output.

〈m,A, c, d, `〉 is added to LG and ` is incremented by one.

(ii) G2, Implicit query by Y in order to answer a signature query made by A: See steps (i)

and (iii) of Signature query on how to program the random oracle in this situation.

(c) Extract query, OE(id):

If there exists a tuple 〈idi, Ri, ci, ri, βi〉 in LH such that (idi = id) ∧ (ri 6= ⊥)

(i) If βi = 0, Y aborts (abort1,1).

(ii) Otherwise, βi = 1 and Y returns usk := (ri + zci, Ri) as the user secret key.

Otherwise

Appendix A. Galindo-Garcia IBS 128

(iii) Y chooses r
U←− Zp, sets R := gr and queries the H-oracle for c := H(id, R). It

returns usk := (r + zc,R) as the secret key.

(d) Signature query, Os(id,m):

If there exists a tuple 〈idi, Ri, ci, ri, βi〉 in LH such that (idi = id) ∧ (ri 6= ⊥)

(i) If βi = 0, Y selects s,
U←− Zp and sets d := s`, A := gs(gα)−rid. It then adds

〈m,A, c, d, `〉 to LG (deferred case G2)
5 and increments ` by one. The signature

returned is σ := (A, s+ zcd,Ri).

(ii) Otherwise, βi = 1 and the user secret key is usk := (y,Ri), where y = ri + zci

and Ri = gri . Y then selects a
U←− Zp, sets A := ga and queries the G-oracle with

d := G(m,A, ci). The signature returned is σ := (a+ yd,Ri, Ai).

Otherwise, Y tosses a coin β with a bias δ (i.e, Pr[β = 0]=δ). The value of δ will be

quantified on analysis.

(iii) If β = 0, Y selects c, s, r
U←− Zp and sets d := s`, R := (gα)r, A := gs(gα)−rd. Next,

it adds 〈id, (gα)r, c, r, 0〉 to LH (deferred case H3), 〈m,A, c, d, `〉 to LG (deferred case

G2) and increments ` by one.6 The signature returned is σ := (s+ zcid,R,A).

(iv) Otherwise, β = 1 and Y selects a, r
U←− Zp and sets A := ga, R := gr. It then

queries the respective oracles with c := H(id, R) and d := G(m,A, c). The signature

returned is σ := (a+ (r + zc)d,R,A).

At the end of the simulation, a successful adversary outputs a valid forgery σ̂ := (b̂, R̂, Â)

on a (îd, m̂). Let 〈idj , Rj , cj , rj , βj〉 be the tuple in LH that corresponds to the target H-query.

Similarly, let 〈mi, Ai, ci, di, `i〉 be the tuple in LG that corresponds to the target G-query. Y returns

(`i, (b̂, cj , rj , βj , di)) as its own output. Note that the side-output σ consists of (b̂, cj , rj , βj , di). That

concludes the description of the wrapper.

Correctness of the discrete-log. In the event of successful forking, R′1 obtains two (related)

sets of side-outputs σ0 and σ1, where σi (for i = 1, 2) is of the form (b̂i, ci, ri, βi, di). Due to

dependency, the adversary is forced to follow the order H < G. As a result, β0 = β1 (denoted by

β), c0 = c1 (denoted by c) and r0 = r1 (denoted by r). In addition, let â denote log gÂ1 = log gÂ0.

5 In the unlikely event of there already existing a tuple 〈mi, Ai, ci, di, `i〉 in LG with (mi = m)∧(Ai = A)∧(ci = c)
but (di 6= d) then G(m,A, c) cannot be set to d. In that case Y can simply increment ` and repeat step (i).

6Y chooses different randomisers if there is a collision as explained in Footnote 5.

Appendix A. Galindo-Garcia IBS 129

Y aborts in the event that β = 1 (abort1,3). In the case β = 0, R′1 ends up with a system of two

congruences {b̂0 = â+ (rα+ zc)d0, b̂1 = â+ (rα+ zc)d1} in two unknowns {â, α}. α can be solved

for as shown below.

α =
(b̂0 − b̂1)− zc(d0 − d1)

r(d0 − d1)
(A.20)

Notice that (A.20) is precisely what R′1 outputs in Algorithm 7.

A.3.1 Analysis

The probability analysis is governed by the three events abort1,1, abort1,2 and abort1,3. The

accepting probability of Y is the same as for R1 and, as a result, so is the probability of abort1,2.

The probability of event abort1,3, on the other hand, is the same as that with which (β = 1), i.e.

P(abort1,3 | ¬abort1,2) = (1− δ). On putting it all together, we get

ε′1 = P(¬abort1,3 ∧ ¬abort1,2)

≥ (1− (1− δ)) · (1− δ)qεε ·
(

(1− δ)qεε
qG

− 1

p

)
= δ · (1− δ)qεε ·

(
(1− δ)qεε

qG

− 1

p

)
(A.21)

Assuming p� 1, (A.21) attains maximum value at the point δ = 1/(1 + 2qε), at which

ε′1 ≥
ε2

2 exp(1)qGqε
.

Here, exp is the base of natural logarithm.

	Acknowledgements
	Notation and Abbreviations
	Publications based on this Thesis
	Abstract
	Keywords
	Introduction
	Identity-Based Signatures
	Provable Security
	Reductionist Security Arguments
	The Random-Oracle Methodology

	Preliminaries
	Public-Key Signatures
	Identity-Based Signatures
	Discrete-Logarithm Assumption

	Organisation of the Thesis

	Schnorr Signature and the Oracle Replay Attack
	Introduction
	Schnorr Signature
	Construction
	Security of Schnorr Signature: An Intuition
	Basic Security

	The Oracle Replay Attack
	The Splitting Lemma
	Launching the Oracle Replay Attack

	General Forking
	Nested Oracle Replay Attacks and Multiple Forking
	Analysis
	Multiple Forking

	Galindo-Garcia IBS, Revisited
	Introduction
	Revisiting the Galindo-Garcia Security Argument
	The Construction
	The Security Argument and Problems with it

	New Security Argument
	Reduction [1]
	Reduction [2]
	Reduction [3]
	A Comparison with the Original Reduction.

	Galindo-Garcia IBS, Improved
	Introduction
	Degradation: A Closer Look
	Galindo-Garcia IBS, Improved
	Security Argument
	Analysis
	Taking Stock

	From sID IBS to ID IBS without Random Oracles
	Introduction
	Chameleon Hash Function
	The Generic Transformation
	Security Argument

	Transforming from the EU-wID-CMA model

	Conclusions
	Appendices
	Galindo-Garcia IBS
	The Fixed Security Argument
	Reduction [1]
	Reduction [2]

	A Security Argument without Wrappers
	Reduction [1]
	Reduction [2]
	Reduction [3]

	Reduction [1][']
	Analysis

