Learning with Errors

Chethan Kamath

IST Austria

April 22, 2015

Table of contents

Background
PAC Model
Noisy-PAC

Learning Parity with Noise
The Parity Function
Learning Parity with Noise
BKW Algorithm

Cryptography from LPN
Background/LWE
Bit-Encryption from LWE
Security

BACKGROUND

Notation

- \mathcal{X} : input set; \mathcal{Y} : binary label-set $\{0,1\}$
- \mathcal{D} : distribution on the input set
- χ, η : distribution of the noise
- C: concept class, c : target concept
- $\mathrm{R}(\mathrm{h})$: generalisation error for a hypothesis h

$$
\mathrm{R}(\mathrm{~h}):=\underset{x \sim \mathcal{D}}{\mathbb{P}}(\mathrm{~h}(x) \neq \mathrm{c}(x))
$$

PAC Model

PAC Model

- Definition ${ }^{1}$ A concept class C is called PAC-learnable if there exists an algorithm L and a function $q_{0}=q_{0}(\epsilon, \delta)$ s.t. for any

1. $\epsilon>0$ (accuracy: approximately correct)
2. $\delta>0$ (confidence: probably)
3. distribution \mathcal{D} on \mathcal{X}
4. target concept $\mathrm{c} \in C$
outputs a hypothesis $h_{S} \in C$ s.t. for any sample size $q \geq q_{0}$:

$$
\mathbb{S}_{S \sim D^{q}}^{\mathbb{P}}\left(\mathrm{R}\left(\mathrm{~h}_{S}\right) \leq \epsilon\right) \geq(1-\delta)
$$

- If L runs in poly $(1 / \epsilon, 1 / \delta)$-time, C is efficiently PAC-learnable
- Distribution-free

Noisy-PAC Model

Noisy-PAC Model

- Definition ${ }^{2}$ A concept class C is efficiently learnable in presence of random classification noise if there exists an algorithm L and a function $q_{0}=q_{0}(\epsilon, \delta)$ s.t. for any

1. $\epsilon>0$ (accuracy: approximately correct)
2. $\delta>0$ (confidence: probably)
3. distribution \mathcal{D} on \mathcal{X}
4. target concept $\mathrm{c} \in C$ and fixed noise-rate $\eta<1 / 2$ outputs a hypothesis $h_{S} \in C$ s.t. for any sample size $q \geq q_{0}$:

$$
\underset{S \sim D^{q}}{\mathbb{P}}\left(\mathrm{R}\left(\mathrm{~h}_{S}\right) \leq \epsilon\right) \geq(1-\delta)
$$

and L runs in $\operatorname{poly}(1 / \epsilon, 1 / \delta)$-time

[^0]
LEARNING PARITY WITH NOISE

The Parity Function: Definition

- Denoted by $\mathrm{f}_{\mathbf{s}}$, where $\mathbf{s} \in \mathbb{Z}_{2}^{n}$ determines it
- The value of the function is given by the rule

$$
\mathrm{f}_{\mathbf{s}}(\mathbf{x}):=\langle\mathbf{s}, \mathbf{x}\rangle \quad(\bmod 2)
$$

- $C:=\left\{\mathrm{f}_{\mathbf{s}}: \mathbf{s} \in \mathbb{Z}_{2}^{n}\right\}$ and $|C|=2^{n}$
- Restricted parity function: f_{s} depends on only the first k bits if all non-zero components of \mathbf{s} lies in the first k bits

Learning the Parity Function

Find s, given

$$
\begin{gathered}
\left\langle\mathbf{s}, \mathbf{x}_{1}\right\rangle=b_{1}(\bmod 2) \\
\vdots \\
\left\langle\mathbf{s}, \mathbf{x}_{q}\right\rangle=b_{q}(\bmod 2)
\end{gathered}
$$

where $\mathbf{s} \in \mathbb{Z}_{2}^{n}, \mathbf{x}_{i} \sim \mathbb{Z}_{2}^{n}(\mathcal{D}=$ uniform $), b_{i} \in \mathbb{Z}_{2}$ and $q \in \operatorname{poly}(n)$

It is possible to learn s using $O(n)$ samples and poly (n) time: Gaussian elimination
Learning for arbitrary \mathcal{D} possible ${ }^{3}$

[^1]
Learning Parity with Noise

Find s, given

$$
\begin{aligned}
\left\langle\mathbf{s}, \mathbf{x}_{1}\right\rangle & \approx_{\eta} b_{1}(\bmod 2) \\
\left\langle\mathbf{s}, \mathbf{x}_{2}\right\rangle & \approx_{\eta} b_{2}(\bmod 2) \\
\vdots & \\
\left\langle\mathbf{s}, \mathbf{x}_{q}\right\rangle & \approx_{\eta} b_{q}(\bmod 2)
\end{aligned}
$$

where $\mathbf{s} \in \mathbb{Z}_{2}^{n}, \mathbf{x}_{i} \sim \mathbb{Z}_{2}^{n}, b_{i} \in \mathbb{Z}_{2}, q \in \operatorname{poly}(n)$ and $\eta<1 / 2$

Let $\mathcal{A}_{\mathbf{s}, \chi}$ denote this distribution

Hardness of LPN: Intuition

- Consider applying Gaussian elimination to the noisy samples to find the first bit
- Find $S \subset[q]$ s.t. $\sum_{i \in S} \mathbf{x}_{i}=(1,0, \ldots, 0)$
- But the noise is amplified: solution correct only with probability $1 / 2+2^{-\Theta(n)}$
- Therefore, the procedure needs to be repeated $2^{\Theta(n)}$ times
- Alternative: maximum likelihood estimation of \mathbf{s} using $\mathrm{O}(n)$ samples and $2 \mathrm{O}(n)$ time

Hardness of LPN

- Statistical Query ${ }^{4}$ Model: the learning algorithm has access to statistical queries, that is instead of the label, it get the probability of a property holding for the particular example
- C is learnable in SQ-model imples it is learnable in the Noisy-PAC model
- LPN: Hard to learn efficiently in the SQ-model

[^2]
BKW ALGORITHM

Overview

- Best known algorithm for LPN
- Solves LPN in time $\mathrm{O}\left(2^{n / \log n}\right)$
- "Block-wise" Gaussian elimination
- Works by iterative "zeroising"
- Focus: LPN on uniform distribution; algorithm works for arbitrary distributions

Setting

- Two parameters: a and b s.t. $n \geq a b$
- Each sample is partitioned into a blocks of size b. That is, a sample, $\mathbf{x}=x_{1}, \ldots, x_{n} \in \mathbb{Z}_{2}^{n}$ is split as

$$
\underbrace{x_{1}, \ldots, x_{b}}_{\text {block } 1} \cdots \underbrace{x_{b(i-1)+1}, \ldots, x_{b(i-1)+b}}_{\text {block } i} \cdots \underbrace{x_{k-b}, \ldots, x_{n}}_{\text {block } a}
$$

- Definition: V_{i}, i-sample
V_{i} : the subspace of $\mathbb{Z}_{2}^{a b}$ consisting of those vectors whose last i blocks have all bits equal to zero i-sample of size s : a set of s vectors independently and uniformly distributed over V_{i}.
Example: 1-sample

Main Theorem

Theorem ${ }^{5}$ LPN can be solved with a sample-size and total computation time poly $\left(\left(\frac{1}{1-2 \eta}\right)^{2^{a}}, 2^{b}\right)$.

Corollary LPN for constant noise-rate $\eta<1 / 2$ can be solved with sample-size and total computation time $2^{\mathrm{O}(n / \log n)}$.

Proof: Plug in $a=(\log n) / 2$ and $b=2 n / \log n$

Zeroising

Input: i-samples $\mathbf{x}_{1}, \ldots, \mathbf{x}_{s}$
Output: $(i+1)$-samples $\mathbf{u}_{1}, \ldots, \mathbf{u}_{s^{\prime}}$

Zeroise $_{i}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{s}\right)$.

1. Partition $\mathbf{x}_{1}, \ldots, \mathbf{x}_{s}$ based on the values in block $a-i$
2. For each partition p pick a vector $\mathbf{x}_{j_{p}}$ at random
3. Zeroise by $\mathbf{x}_{j_{p}}$ to each of the other vectors in the partition
4. Return the resulting vectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{s^{\prime}}$

Lemma

1. $\mathbf{u}_{1}, \ldots, \mathbf{u}_{s^{\prime}}$ are $(i+1)$-samples with $s^{\prime} \geq s-2^{b}$
2. Each vector in $\mathbf{u}_{1}, \ldots, \mathbf{u}_{s^{\prime}}$ is written as the sum of two vectors in $\mathbf{x}_{1}, \ldots, \mathbf{x}_{s}$
3. The run-time $O(s)$

Main Algorithm

Input: s labelled examples $\left(\mathbf{x}_{1}, b_{1}\right), \ldots,\left(\mathbf{x}_{s}, b_{s}\right)$
Output: set $S \subset[s]$ s.t. $\sum_{i \in S} \mathbf{x}_{i}=(1,0, \ldots, 0)$

Solve $\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{s}\right)$:

1. For $i=1, \ldots, a-1$, iteratively call Zeroise ${ }_{i}(\cdot)$
2. Let $\mathbf{u}_{1}, \ldots, \mathbf{u}_{s^{\prime}}$ be the resulting (a-1)-samples
3. If $(1,0, \ldots, 0) \in\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{s^{\prime}}\right\}$ output the index of the 2^{a-1} vectors subset of $\mathbf{x}_{1}, \ldots, \mathbf{x}_{s}$ that resulted in $(1,0, \ldots, 0)$

The first bit of \mathbf{s} is: $\sum_{i \in S} b_{i}(\bmod 2)$

Analysis

- If $s=a 2^{b}$, then $s^{\prime} \geq 2^{b}$
- Probability of output is $(1-1 / e)$
- Probability that output is correct is $\geq 1 / 2+1 / 2(1-2 \eta)^{2^{2-1}}$
- Repeat poly $\left(\left(\frac{1}{1-2 \eta}\right)^{2}, b\right)$ times to reduce the error probability

Main Algorithm

- The rest of the bits of \mathbf{s} can be found using Solve(•) on cycling shifting all the examples.
- Thus the effective computation time is poly $\left(\left(\frac{1}{1-2 \eta}\right)^{2^{a}}, 2^{b}\right)$
- Recall: Restricted parity function depends only on k bits of \mathbf{s}
- If $k=\mathrm{O}(\log n)$ then we can learn the parity in $\mathrm{O}(n)$
- Leads to separation between SQ-Model (where restricted-LPN is hard) and the noisy-PAC model

CRYPTOGRAPHY FROM LPN
"In some sense, cryptography is the opposite of learning."

- Shalev-Schwartz and Ben-David

Cryptography 101

How to build protocols?

1. Assume a "hard" problem π (e.g., factorisation, discrete-log)
2. Build a protocol Π on π
3. Aim: η is hard $\Longrightarrow \Pi$ is not breakable \equiv Π is breakable $\Longrightarrow \pi$ is not hard

Reductions: $\pi \leq \Pi$

1. Assume an adversary A against Π and use it to break π

2. Since η is assumed to be hard, this leads to a contradiction.

Recall: LPN

Find s, given

$$
\begin{aligned}
\left\langle\mathbf{s}, \mathbf{x}_{1}\right\rangle & \approx_{\eta} b_{1}(\bmod 2) \\
\left\langle\mathbf{s}, \mathbf{x}_{2}\right\rangle & \approx_{\eta} b_{2}(\bmod 2) \\
\vdots & \\
\left\langle\mathbf{s}, \mathbf{x}_{q}\right\rangle & \approx_{\eta} b_{q}(\bmod 2)
\end{aligned}
$$

where $\mathbf{s} \in \mathbb{Z}_{2}^{n}, \mathbf{x}_{i} \sim \mathbb{Z}_{2}^{n}, b_{i} \in \mathbb{Z}_{2}, q \in \operatorname{poly}(n)$ and $\eta<1 / 2$

Learning with Errors: LPN for higher moduli

Find s, given

$$
\begin{aligned}
&\left\langle\mathbf{s}, \mathbf{x}_{1}\right\rangle \approx_{\chi} b_{1}(\bmod p) \\
&\left\langle\mathbf{s}, \mathbf{x}_{2}\right\rangle \approx_{\chi} b_{2}(\bmod p) \\
& \vdots \\
&\left\langle\mathbf{s}, \mathbf{x}_{q}\right\rangle \approx_{\chi} b_{q}(\bmod p)
\end{aligned}
$$

where $\mathbf{s} \in \mathbb{Z}_{p}^{n}, \mathbf{x}_{i} \sim \mathbb{Z}_{p}^{n}, b_{i} \in \mathbb{Z}_{p}, q \in$ poly and
χ is a probability distribution on \mathbb{Z}_{p}

LPN $=$ LWE if $p=2$ and $\chi(0)=1-\eta, \chi(1)=\eta$

Hardness of LWE

- Conjectured to be hard to break
- Lattice problems reduce ${ }^{6}$ to LWE for appropriate choice of p and χ
- Example: $p=\mathrm{O}\left(n^{2}\right), \alpha=\mathrm{O}(\sqrt{n} \log n)$ and $\chi=\bar{\Psi}_{\alpha}$, discrete Gaussian on \mathbb{Z}_{p} with s.d. αp
- For the above parameters SVP, SIVP \leq LWE
- SVP: shortest-vector problem
- SIVP: shortest independent vectors problem
- The above parameters used for the encryption scheme

REGEV'S ENCRYPTION SCHEME

Encryption Scheme: Definitions

Consists of three algorithms $\Pi=\{K, E, D\}$

Key Generation. K : $\mathbb{N} \rightarrow \mathcal{K}$

$$
(\mathrm{pk}, \mathrm{sk}) \leftarrow^{\varsigma} \mathrm{K}\left(1^{n}\right)
$$

Encryption. E: $\mathcal{M} \rightarrow \mathcal{C}$

$$
c \stackrel{\mathrm{~s}}{\leftarrow} \mathrm{E}(m, \mathrm{pk})
$$

Decryption. $\mathrm{D}: \mathcal{C} \rightarrow \mathcal{M} \cup\{\perp\}$

$$
m^{\prime} \leftarrow \mathrm{D}(c, \mathrm{sk})
$$

Requirements:

1. Correctness: for all $(\mathrm{pk}, \mathrm{sk}) \stackrel{\varsigma}{\leftarrow} \mathrm{K}\left(1^{n}\right), m{ }_{\leftarrow}^{\varsigma} \mathcal{M}$

$$
\mathrm{D}(\mathrm{E}(\mathrm{pk}, m), \mathrm{sk})=m
$$

2. Security: ciphertext c should not leak any information about the plaintext m

Bit-Encryption from LWE

- Bit-Encryption: $\mathcal{M}=\{0,1\}$
- Parameters:

1. $n \in \mathbb{N}$: the security parameter
2. p : prime modulus of the underlying group $\left(p=\mathrm{O}\left(n^{2}\right)\right)$
3. ℓ : length of the public key $(\ell=5 n)$
4. $\chi=\bar{\psi}_{\alpha}$

Bit-Encryption from LWE

Key Generation, K $\left(1^{n}\right)$:

1. Secret key: sk: $=\mathbf{s} \stackrel{5}{\leftarrow} \mathbb{Z}_{p}^{n}$
2. Public key: pk :=\{ $\left.\mathbf{x}_{i}, b_{i}\right\}_{i=1}^{\ell}$, where

$$
\mathbf{x}_{1}, \ldots, \mathbf{x}_{\ell} \stackrel{s}{\leftarrow} \mathbb{Z}_{p}^{n}, e_{1}, \ldots, e_{\ell} \leftarrow^{s} \chi \text { and } b_{i}:=\left\langle\mathbf{x}_{i}, \mathbf{s}\right\rangle+e_{i}
$$

Encryption, $\mathrm{E}(m, \mathrm{pk})$:

1. Choose random $S \subset[\ell]$
2. $c:= \begin{cases}\left(\sum_{i \in S} \mathbf{x}_{i}, \sum_{i \in S} b_{i}\right) & \text { if } m=0 \\ \left(\sum_{i \in S} \mathbf{x}_{i},\lfloor p / 2\rfloor+\sum_{i \in S} b_{i}\right) & \text { if } m=1\end{cases}$

Decryption, $\mathrm{D}(c, \mathrm{sk})$: Note that $c=(\mathbf{x}, b)$

1. $m^{\prime}:= \begin{cases}0 & \text { if } b-\langle\mathbf{x}, \mathbf{s}\rangle \text { is closer to } 0 \text { than }\lfloor p / 2\rfloor(\text { modulo } p \text {) } \\ 1 & \text { otherwise }\end{cases}$

Correctness

- Intuition: since the noise is sampled from appropriate discrete Gaussian, it does not drown the message
- Argument
- Decryption: $e:=\sum_{i \in S} e_{i}= \begin{cases}b-\langle\mathbf{x}, \mathbf{s}\rangle & \text { if } m=0 \\ b-\langle\mathbf{x}, \mathbf{s}\rangle-\lfloor p / 2\rfloor & \text { if } m=1\end{cases}$

$$
m=0 \quad m=1
$$

$$
\begin{array}{lllll}
-p / 4 & 0 & p / 4 & p / 2 & 3 p / 4
\end{array}
$$

- Error in decryption only if $e<p / 4$
- Let's χ^{*} denote the distribution of e
- Claim: for $\chi=\bar{\Psi}_{\alpha}$

$$
\underset{\mathbf{e} \sim \chi^{*}}{\mathbb{P}}(e<p / 4)>1-\delta \text { for some } \delta>0
$$

Security

- Distributions involved:

1. $\mathcal{A}_{\mathrm{s}, \eta}$: LWE sampling
2. \mathcal{C}_{m} : ciphertext corresponding to encryption of bit m
3. \mathcal{U} : uniform distribution on $\mathbb{Z}_{p}^{n} \times \mathbb{Z}_{p}$

- $\mathcal{X} \not \equiv \equiv \mathcal{Y}$: denotes that D distinguishes \mathcal{X} from \mathcal{Y}
- Argument

1. Assume that the ciphertexts are distinguishable
2. $\exists \mathrm{A}$ s.t. $\mathcal{C}_{0} \not \equiv \mathcal{C}_{1} \Longrightarrow$
3. $\exists \mathrm{A}^{\prime}$ s.t. $\mathcal{C}_{0} \not{ }^{\mathrm{A}^{\prime}} \boldsymbol{\mathcal { U }}$ [shifting + averaging $] \Longrightarrow$
4. $\exists \mathrm{A}^{\prime \prime}$ s.t. $\mathcal{A}_{\mathrm{s}, \eta}{ }^{\mathrm{A}^{\prime \prime}} \equiv \mathcal{U}$ [Leftover Hash Lemma]

More LWE

- Post-Quantum Cryptosystems
- Fully-Homomorphic Encryption ${ }^{7}$

[^3]
Sources

Mohri et al.- Foundations of Machine Learning Shalev-Schwartz and Ben-David - Understanding Machine Learning
Regev - On Lattices, Learning with Errors, Random Linear Codes, and Cryptography
Blum et al.- Noise-Tolerant Learning, the Parity Problem and the SQ Model

THANK YOU!

[^0]: ${ }^{2}$ Angluin and Laird, 1998

[^1]: ${ }^{3}$ Helmbold et al., 1992

[^2]: ${ }^{4}$ Kearns, 1998

[^3]: ${ }^{7}$ Brakerski and Vaikuntanathan, 2011

