Learning with Errors

Chethan Kamath

IST Austria

April 22, 2015

Table of contents

Background PAC Model Noisy-PAC

Learning Parity with Noise

The Parity Function Learning Parity with Noise BKW Algorithm

Cryptography from LPN

Background/LWE Bit-Encryption from LWE Security

BACKGROUND

Notation

- \mathcal{X} : input set; \mathcal{Y} : binary label-set $\{0,1\}$
- \mathcal{D} : distribution on the input set
- χ, η : distribution of the noise
- ► C: concept class, c: target concept
- R(h): generalisation error for a hypothesis h

$$\mathbf{R}(\mathbf{h}) := \Pr_{\mathbf{x} \sim \mathcal{D}}(\mathbf{h}(\mathbf{x}) \neq \mathbf{c}(\mathbf{x}))$$

PAC Model

PAC Model

Definition¹ A concept class C is called PAC-learnable if there exists an algorithm L and a function q₀ = q₀(ε, δ) s.t. for any

- 1. $\epsilon > 0$ (accuracy: approximately correct)
- 2. $\delta > 0$ (confidence: probably)
- 3. distribution ${\mathcal D}$ on ${\mathcal X}$
- 4. target concept $c \in C$

outputs a hypothesis $h_S \in C$ s.t. for any sample size $q \ge q_0$:

$$\mathbb{P}_{\mathcal{S}\sim\mathcal{D}^q}(\mathrm{R}(\mathrm{h}_{\mathcal{S}})\leq\epsilon)\geq(1-\delta)$$

If L runs in poly(1/ε, 1/δ)-time, C is efficiently PAC-learnable
Distribution-free

¹Valiant, 1984

Noisy-PAC Model

Noisy-PAC Model

- Definition² A concept class C is efficiently learnable in presence of random classification noise if there exists an algorithm L and a function q₀ = q₀(ε, δ) s.t. for any
 - 1. $\epsilon > 0$ (accuracy: approximately correct)
 - 2. $\delta > 0$ (confidence: probably)
 - 3. distribution \mathcal{D} on \mathcal{X}
 - 4. target concept $c \in C$

and fixed noise-rate $\eta < 1/2$ outputs a hypothesis $h_S \in C$ s.t. for any sample size $q \ge q_0$:

$$\mathbb{P}_{S \sim \mathcal{D}^q}(\mathrm{R}(\mathrm{h}_{\mathcal{S}}) \leq \epsilon) \geq (1 - \delta)$$

and L runs in $\mathsf{poly}(1/\epsilon, 1/\delta)$ -time

²Angluin and Laird, 1998

LEARNING PARITY WITH NOISE

The Parity Function: Definition

- ▶ Denoted by f_s , where $s \in \mathbb{Z}_2^n$ determines it
- The value of the function is given by the rule

 $f_{\mathbf{s}}(\mathbf{x}) := \langle \mathbf{s}, \mathbf{x} \rangle \pmod{2}$

•
$$C := \{ \mathrm{f}_{\mathbf{s}} : \mathbf{s} \in \mathbb{Z}_2^n \}$$
 and $|C| = 2^n$

Restricted parity function: f_s depends on only the first k bits if all non-zero components of s lies in the first k bits

Learning the Parity Function

Find s, given

$$\langle \mathbf{s}, \mathbf{x}_1 \rangle = b_1 \pmod{2}$$

:
 $\langle \mathbf{s}, \mathbf{x}_q \rangle = b_q \pmod{2}$

where $\mathbf{s} \in \mathbb{Z}_2^n$, $\mathbf{x}_i \sim \mathbb{Z}_2^n$ (\mathcal{D} =uniform), $b_i \in \mathbb{Z}_2$ and $q \in \mathsf{poly}(n)$

It is possible to learn **s** using O(n) samples and poly(n) time: Gaussian elimination

Learning for arbitrary \mathcal{D} possible³

³Helmbold et al., 1992

Learning Parity with Noise

Find s, given

 $egin{aligned} &\langle \mathbf{s}, \mathbf{x}_1
angle pprox_\eta \ b_1 \pmod{2} \ &\langle \mathbf{s}, \mathbf{x}_2
angle pprox_\eta \ b_2 \pmod{2} \ &dots \ &do$

where $\mathbf{s} \in \mathbb{Z}_2^n$, $\mathbf{x}_i \sim \mathbb{Z}_2^n$, $b_i \in \mathbb{Z}_2$, $q \in \mathsf{poly}(n)$ and $\eta < 1/2$

Let $\mathcal{A}_{\mathbf{s},\chi}$ denote this distribution

Hardness of LPN: Intuition

- Consider applying Gaussian elimination to the noisy samples to find the first bit
 - Find $S \subset [q]$ s.t. $\sum_{i \in S} \mathbf{x}_i = (1, 0, \dots, 0)$
 - ► But the noise is amplified: solution correct only with probability 1/2 + 2^{-Θ(n)}
 - Therefore, the procedure needs to be repeated $2^{\Theta(n)}$ times
- Alternative: maximum likelihood estimation of s using O(n) samples and 2^{O(n)} time

Hardness of LPN

- Statistical Query⁴ Model: the learning algorithm has access to statistical queries, that is instead of the label, it get the probability of a property holding for the particular example
- C is learnable in SQ-model imples it is learnable in the Noisy-PAC model
- ► LPN: Hard to learn efficiently in the SQ-model

BKW ALGORITHM

Overview

- Best known algorithm for LPN
- ▶ Solves LPN in time O(2^{n/log n})
- "Block-wise" Gaussian elimination
- Works by iterative "zeroising"
- Focus: LPN on uniform distribution; algorithm works for arbitrary distributions

Setting

- Two parameters: **a** and **b** s.t. $n \ge ab$
- ► Each sample is partitioned into a blocks of size b. That is, a sample, x = x₁,..., x_n ∈ Zⁿ₂ is split as

$$\underbrace{x_1, \dots, x_b}_{\text{block 1}} \cdots \underbrace{x_{b(i-1)+1}, \dots, x_{b(i-1)+b}}_{\text{block } i} \cdots \underbrace{x_{k-b}, \dots, x_n}_{\text{block } a}$$

► Definition: V_i, i-sample

 V_i : the subspace of \mathbb{Z}_2^{ab} consisting of those vectors whose last *i* blocks have all bits equal to zero *i*-sample of size *s*: a set of *s* vectors independently and uniformly distributed over V_i .

Example: 1-sample

$$\underbrace{x_1, \dots, x_b}_{\text{block 1}} \cdots \underbrace{x_{b(i-1)+1}, \dots, x_{b(i-1)+b}}_{\text{block } i} \cdots \underbrace{0, 0, \dots, 0}_{\text{block } a}$$

Main Theorem

Theorem⁵ LPN can be solved with a sample-size and total computation time $poly((\frac{1}{1-2\eta})^{2^a}, 2^b)$.

Corollary LPN for constant noise-rate $\eta < 1/2$ can be solved with sample-size and total computation time $2^{O(n/\log n)}$.

Proof: Plug in $a = (\log n)/2$ and $b = 2n/\log n$

Zeroising

```
Input: i-samples \mathbf{x}_1, \dots, \mathbf{x}_s
Output: (i + 1)-samples \mathbf{u}_1, \dots, \mathbf{u}_{s'}
```

 $\operatorname{Zeroise}_i(\mathbf{x}_1,\ldots,\mathbf{x}_s).$

- 1. Partition $\mathbf{x}_1, \dots, \mathbf{x}_s$ based on the values in block a i
- 2. For each partition p pick a vector \mathbf{x}_{i_p} at random
- 3. Zeroise by \mathbf{x}_{i_0} to each of the other vectors in the partition
- 4. Return the resulting vectors $\mathbf{u}_1, \ldots, \mathbf{u}_{s'}$

Lemma

- 1. $\mathbf{u}_1, \ldots, \mathbf{u}_{s'}$ are (i+1)-samples with $s' \ge s 2^b$
- 2. Each vector in $\mathbf{u}_1, \ldots, \mathbf{u}_{s'}$ is written as the sum of two vectors in $\mathbf{x}_1, \ldots, \mathbf{x}_s$
- 3. The run-time O(s)

Main Algorithm

Input: *s* labelled examples $(\mathbf{x}_1, b_1), \dots, (\mathbf{x}_s, b_s)$ Output: set $S \subset [s]$ s.t. $\sum_{i \in S} \mathbf{x}_i = (1, 0, \dots, 0)$

$\begin{aligned} & \mathsf{Solve}(\mathbf{x}_1, \dots, \mathbf{x}_s): \\ & 1. \ \text{For } i = 1, \dots, a-1, \text{ iteratively call Zeroise}_i(\cdot) \\ & 2. \ \text{Let } \mathbf{u}_1, \dots, \mathbf{u}_{s'} \text{ be the resulting } (a-1)\text{-samples} \\ & 3. \ \text{If } (1, 0, \dots, 0) \in \{\mathbf{u}_1, \dots, \mathbf{u}_{s'}\} \text{ output the index of the } 2^{a-1} \\ & \text{ vectors subset of } \mathbf{x}_1, \dots, \mathbf{x}_s \text{ that resulted in } (1, 0, \dots, 0) \end{aligned}$

The first bit of **s** is: $\sum_{i \in S} b_i \pmod{2}$

Analysis

- If $s = a2^b$, then $s' \ge 2^b$
- Probability of output is (1 1/e)
- Probability that output is correct is $\geq 1/2 + 1/2(1-2\eta)^{2^{a-1}}$
- Repeat poly($(\frac{1}{1-2\eta})^{2^a}, b$) times to reduce the error probability

Main Algorithm

- ► The rest of the bits of s can be found using Solve(·) on cycling shifting all the examples.
- Thus the effective computation time is $poly((\frac{1}{1-2\eta})^{2^a}, 2^b)$
- Recall: Restricted parity function depends only on k bits of s
- If $k = O(\log n)$ then we can learn the parity in O(n)
- Leads to separation between SQ-Model (where restricted-LPN is hard) and the noisy-PAC model

CRYPTOGRAPHY FROM LPN

"In some sense, cryptography is the opposite of learning." - Shalev-Schwartz and Ben-David

Cryptography 101

How to build protocols?

- 1. Assume a "hard" problem π (e.g., factorisation, discrete-log)
- 2. Build a protocol Π on π
- 3. Aim: η is hard $\implies \Pi$ is not breakable $\equiv \Pi$ is breakable $\implies \pi$ is not hard

Reductions: $\pi \leq \Pi$

1. Assume an adversary A against Π and use it to break π

$$C \xrightarrow{\pi} \bullet \bullet \xrightarrow{\pi} B \xrightarrow{\Pi} \bullet \bullet \xrightarrow{\Pi} A$$

2. Since η is assumed to be hard, this leads to a contradiction.

Recall: LPN

Find s, given

 $egin{array}{l} \langle {f s}, {f x}_1
angle pprox_\eta \ b_1 \pmod 2 \ \langle {f s}, {f x}_2
angle pprox_\eta \ b_2 \pmod 2 \ dots \ dots \ \langle {f s}, {f x}_q
angle pprox_\eta \ b_q \pmod 2 \end{array}$

where $\mathbf{s} \in \mathbb{Z}_2^n$, $\mathbf{x}_i \sim \mathbb{Z}_2^n$, $b_i \in \mathbb{Z}_2$, $q \in \mathsf{poly}(n)$ and $\eta < 1/2$

Learning with Errors: LPN for higher moduli

Find s, given

$$egin{aligned} &\langle \mathbf{s}, \mathbf{x}_1
angle pprox_\chi \ b_1 \pmod{p} \ &\langle \mathbf{s}, \mathbf{x}_2
angle pprox_\chi \ b_2 \pmod{p} \ &dots \ &do$$

where $\mathbf{s} \in \mathbb{Z}_p^n, \mathbf{x}_i \sim \mathbb{Z}_p^n$, $b_i \in \mathbb{Z}_p$, $q \in \text{poly and} \chi$ is a probability distribution on \mathbb{Z}_p

LPN=LWE if
$$p=2$$
 and $\chi(0)=1-\eta, \chi(1)=\eta$

Hardness of IWF

- Conjectured to be hard to break
- \blacktriangleright Lattice problems reduce⁶ to LWE for appropriate choice of p and χ
 - Example: $p = O(n^2)$, $\alpha = O(\sqrt{n} \log n)$ and $\chi = \overline{\Psi}_{\alpha}$, discrete Gaussian on \mathbb{Z}_p with s.d. αp For the above parameters SVP, SIVP \leq LWE
 - - SVP: shortest-vector problem
 - SIVP: shortest independent vectors problem
- The above parameters used for the encryption scheme

REGEV'S ENCRYPTION SCHEME

Encryption Scheme: Definitions

Consists of three algorithms $\Pi = \{K, E, D\}$

```
Key Generation. K : \mathbb{N} \to \mathcal{K}

(pk, sk) \stackrel{s}{\leftarrow} K(1^n)

Encryption. E : \mathcal{M} \to \mathcal{C}

c \stackrel{s}{\leftarrow} E(m, pk)

Decryption. D : \mathcal{C} \to \mathcal{M} \cup \{\bot\}

m' \leftarrow D(c, sk)
```

Requirements:

1. Correctness: for all $(pk, sk) \stackrel{s}{\leftarrow} K(1^n)$, $m \stackrel{s}{\leftarrow} \mathcal{M}$

$$D(E(pk, m), sk) = m$$

2. Security: ciphertext *c* should not leak any information about the plaintext *m*

Bit-Encryption from LWE

• Bit-Encryption: $\mathcal{M} = \{0, 1\}$

Parameters:

- 1. $n \in \mathbb{N}$: the security parameter
- 2. p: prime modulus of the underlying group $(p = O(n^2))$
- 3. ℓ : length of the public key ($\ell = 5n$)

4.
$$\chi = \bar{\Psi}_{\alpha}$$

Bit-Encryption from LWE

Key Generation, K(1ⁿ): 1. Secret key: $\mathbf{sk} := \mathbf{s} \stackrel{s}{\leftarrow} \mathbb{Z}_p^n$ 2. Public key: $\mathbf{pk} := \{\mathbf{x}_i, b_i\}_{i=1}^{\ell}$, where $\mathbf{x}_1, \dots, \mathbf{x}_{\ell} \stackrel{s}{\leftarrow} \mathbb{Z}_p^n$, $e_1, \dots, e_{\ell} \stackrel{s}{\leftarrow} \chi$ and $b_i := \langle \mathbf{x}_i, \mathbf{s} \rangle + e_i$

Encryption,
$$E(m, pk)$$
:
1. Choose random $S \subset [\ell]$
2. $c := \begin{cases} (\sum_{i \in S} \mathbf{x}_i, \sum_{i \in S} b_i) & \text{if } m = 0 \\ (\sum_{i \in S} \mathbf{x}_i, \lfloor p/2 \rfloor + \sum_{i \in S} b_i) & \text{if } m = 1 \end{cases}$

Decryption, D(c, sk): Note that $c = (\mathbf{x}, b)$ 1. $m' := \begin{cases} 0 & \text{if } b - \langle \mathbf{x}, \mathbf{s} \rangle \text{ is closer to } 0 \text{ than } \lfloor p/2 \rfloor \pmod{p} \\ 1 & \text{otherwise} \end{cases}$

Correctness

- Intuition: since the noise is sampled from appropriate discrete Gaussian, it does not drown the message
- Argument

► Decryption:
$$e := \sum_{i \in S} e_i = \begin{cases} b - \langle \mathbf{x}, \mathbf{s} \rangle & \text{if } m = 0 \\ b - \langle \mathbf{x}, \mathbf{s} \rangle - \lfloor p/2 \rfloor & \text{if } m = 1 \end{cases}$$

$$m = 0 \qquad m = 1$$

$$-p/4 \qquad 0 \qquad p/4 \qquad p/2 \qquad 3p/4$$

- Error in decryption only if e < p/4
- \blacktriangleright Let's χ^* denote the distribution of e
- Claim: for $\chi = \bar{\Psi}_{\alpha}$

$$\mathop{\mathbb{P}}\limits_{\mathbf{e} \sim \chi^*}(\mathbf{e} < \mathbf{p}/4) > 1 - \delta$$
 for some $\delta > 0$

Security

- Distributions involved:
 - 1. $\mathcal{A}_{\mathbf{s},\eta}$: LWE sampling
 - 2. C_m : ciphertext corresponding to encryption of bit m
 - 3. \mathcal{U} : uniform distribution on $\mathbb{Z}_p^n \times \mathbb{Z}_p$
- $\mathcal{X} \stackrel{\mathsf{D}}{\neq} \mathcal{Y}$: denotes that D distinguishes \mathcal{X} from \mathcal{Y}

Argument

1. Assume that the ciphertexts are distinguishable

2.
$$\exists A \text{ s.t. } \mathcal{C}_0 \stackrel{A}{\neq} \mathcal{C}_1 \implies$$

3. $\exists A' \text{ s.t. } \mathcal{C}_0 \stackrel{A'}{\neq} \mathcal{U}$ [shifting + averaging] \implies
4. $\exists A'' \text{ s.t. } \mathcal{A}_{\mathbf{s},\eta} \stackrel{A''}{\neq} \mathcal{U}$ [Leftover Hash Lemma]

More LWE

- Post-Quantum Cryptosystems
- ► Fully-Homomorphic Encryption⁷

⁷Brakerski and Vaikuntanathan, 2011

Sources

Mohri et al.- Foundations of Machine Learning

Shalev-Schwartz and Ben-David – Understanding Machine Learning

Regev – On Lattices, Learning with Errors, Random Linear Codes, and Cryptography

Blum et al.– Noise-Tolerant Learning, the Parity Problem and the SQ Model

THANK YOU!