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Abstract

In Africacrypt 2009, Galindo and Garcia proposed a lightweight identity-based signature
(IBS) scheme based on the Schnorr signature. The construction is simple and claimed to
be the most efficient IBS till date. The security is argued, primarily, by using the Multiple-
Forking (MF) Algorithm which is used to launch nested replay attack on the adversary and,
consequently, contradict the discrete-log assumption. However, this security argument was
shown to be flawed, and subsequently fixed, by Chatterjee et al.. The resulting security,
though, is still quite loose with a tightness gap of O

(
q6
)

(where q denotes the bound on the
number of queries to the random oracle). The loss of tightness is, in fact, inherited from
the MF Algorithm. In this paper, we contemplate a better security bound for Galindo-
Garcia IBS (GG-IBS). To this end, we introduce two notions pertaining to the simulation
of random oracles: “dependency” and “independency”. The notion of independency follows
naturally for GG-IBS; dependency, on the other hand, has to be induced by modifying the
construction of the protocol in a clever manner. It turns out that the two notions can be
applied in conjunction, and this leads to the nested replay attack being launched far more
effectively than using the MF Algorithm. As a result, the effective degradation is reduced
to O

(
q3
)
. The non-trivial aspect is to leverage these two notions in the security argument.

Keywords: Identity-Based Signature, Galindo-Garcia IBS, Multiple-Forking Lemma,
Replay Attack, Provable Security, Tightness.
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1 Introduction

In Africacrypt’09, Galindo and Garcia [GG09] used the technique of concatenated Schnorr’s
signature [Sch91] to propose an identity-based signature (IBS) [Sha85] that works in the discrete-
log setting but does not require pairing. The authors came up with a security proof of the pro-
posed IBS scheme in the standard EU-ID-CMA model using the Multiple-Forking (MF) Lemma
[BN06, BPW12, PS00], and after a comparative study concluded that the proposed construction
has an overall better performance than the existing RSA-based [FS87, GQ90] and pairing-based
schemes [CC02, Her05, Hes03]. The Galindo-Garcia IBS (GG-IBS), due to its efficiency and
simplicity, has been used as a building block for a couple of other cryptosystems [RS11, XW12].

Security. The security was argued in [GG09] through two reductions, B1 and B2, the choice
of which is determined by an event E. The authors construct B1 to solve the DLP when the
event E occurs; on the other hand, B2 is used to solve the DLP in case the complement of E
occurs. Both the reductions use the Multiple-Forking (MF) Lemma [BPW12] to show that the
DLP is reduced to breaking the IBS scheme. However, Chatterjee et al. [CKK13] made several
observations on this security argument. In particular, they showed that the reduction B1 fails
to provide a proper simulation of the unforgeability game in the standard security model for
IBS [BNN04], while the reduction B2 is incomplete. They gave a new argument which consists
of three reductions: R1, R2 and R3. At a high level, R1 addressed the problems identified in
the original B1, while R2 and R3, together, addressed the incompleteness of the original B2. A
comparison of the two arguments is given in Table 1. We refer the reader to the full version of
[CKK13] for more (and updated) details.

1.1 Oracle Replay Attack: Rewinding vs. General Forking

As already noted, the security of GG-IBS is aided, primarily, by the Multiple-Forking (MF)
Algorithm which is used to launch nested replay attack on the adversary. The concept of
multiple forking finds its roots in the works of Pointcheval and Stern [PS00]. They came up
with the machinery of oracle replay attack1 to argue the security of a large class2 of signature
schemes [ElG85, Sch91, Oka93]. In the basic version of replay attack, one runs the adversary

This is a precursor to [CK13].
1We will use the terms forking and (the process of launching) oracle replay attack interchangeably.
2To be precise, the signature schemes obtained from three-round identification schemes (Σ-protocols) through

the Fiat-Shamir transformation [FS87].
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[GG09] B1 B2

Degradation O
(
q3G/ε

)
O
(
(qGqH)6/ε3

)
Forking Algorithm MW ,1 MW ,3

[CKK13] R1 R2 R3

Degradation O (qGqε/ε) O
(
(qH + qG)2/ε

)
O
(
(qH + qG)6/ε3

)
Forking Algorithm FW MW ,1 MW ,3

Our Result R′1 R′2

Degradation O (qGqε/ε) O
(
(qG + qH)3/ε3

)
Forking Algorithm FW Nested forking via rewinding

Table 1: A comparison of degradation for the security arguments in [GG09], [CKK13] and this
paper. As usual, qG and qH denote the upper bound on the respective hash oracle queries,
whereas, qε denotes upper bound on the extract queries.

twice (by rewinding3 it, see Figure 1), on related inputs, in order to solve the underlying hard
problem. The probability of success of the replay attack is bounded by the Forking Lemma
of [PS00] which, informally, states that the cost of the forking is roughly O (q). The Splitting
Lemma plays a crucial role in establishing this bound.

. . //round 0

· Qi

. . //round 1

T(i−)

T(i+)

T′(i+)

Figure 1: An elementary oracle replay attack: the adversary is “forked” at the point Qi. Here,
T denotes the tape involved in the simulation.

The abstraction: general forking Bellare and Neven [BN06] proposed a more abstract
version called the General Forking (GF) Lemma. The concept of general forking is formulated
in terms of randomised algorithms and its outputs, leaving out the notions of signature scheme as

3We discuss a rather näıve approach that could be used to rewind the adversary, which is modelled as a
probabilistic Turing machine. The state of progress of a Turing machine is (completely) determined by its
current state (from the state register), the contents of the tape and the position of the head on the tape. The
basic idea involved in rewinding is as follows. The simulator explicitly saves the state of progress of the adversary
every time it queries the random oracle. To be precise, it saves the current state (from the state register), the
contents of the tape and the position of the head on a separate, external, tape. The simulator, thus, may have
to save at most q states of progress. At the end of the round, the simulator has sufficient information about the
critical point. Besides, the state of progress of the adversary at this critical point–the critical state of progress–is
highly likely to be one of the saved states of progress. Therefore, in order to rewind the adversary, the simulator
has to just look up for this critical state of progress and restore the adversary to it.
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well as random oracles [BR93] altogether. Rewinding is achieved by fixing the randomness of the
adversary and, then, running it twice. The claimed advantage is to allow for more modular and
easy to verify proof of cryptographic schemes that apply the notion of forking in their security
argument. The gap between the abstract and the concrete is, then, bridged using the so-called
“wrapper” algorithm. While the GF/MF Algorithm takes care of the replay attack, it is the
wrapper that handles the simulation of the protocol environment to the actual adversary. The
reduction consists of invoking the appropriate forking algorithm (on the associated wrapper)
and utilising its outputs to solve the underlying hard problem. The analysis, as well, proceeds
in a different manner: it is similar to that of a randomised algorithm, with the adversary (the
wrapper, to be precise) modelled as a random variable.4 The cost of forking, though, is still
O (q).

Multiple forking. The concept of general forking was further generalised by Boldyreva et
al. [BPW12] leading to the Multiple Forking (MF) Lemma. The immediate motivation behind
this new abstraction was to argue the security of a proxy signature scheme that uses more than
one hash functions. The hash functions are modelled as random oracles and the MF Algorithm
allows one to mount the so-called nested replay attacks by rewinding the adversary several times
on related inputs. In particular, a nested oracle replay attack involves two random oracles and
multiple forkings on the two oracles (see Figure 2). The more abstract notion of multiple
forking still retains the modularity advantage of general forking and has been applied in several
other security arguments [GG09, CMW12, CKK13] in a more-or-less black-box fashion.

. .

· Q0i

. .

· Q0j

. .

· Q2i

. .

T0(j−)

T0(ji)

T0(i+)

T1(i+)

T2(ji)

T2(i+)

T3(i+)

Figure 2: Nested replay attack with three forkings: the adversary is “forked” at the points Q0i ,
Q0j and Q2i , in that order. Again, T denotes the tape involved in the simulation.

The cost of multiple forking is determined by the number of times the adversary is forked: if
it is denoted by n (MW ,n), the cost is roughly O

(
q2n
)
. By implication, it costs the challenger

O
(
q2
)

per forking.

1.2 Our Contribution

Even though Chatterjee et al. had managed to fix the security argument for GG-IBS, the
security bound that they ended up with (in [CKK13, Theorem 1]) is still quite loose. The
loss of tightness is, in fact, inherited from the MF Algorithm (see Algorithm 2) which is
used to launch nested replay attack on the GG-IBS adversary. To be accurate, the use of MF

4We will see how the two analyses are connected by the characteristic expression in §3.4.
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Algorithm with n = 3 (MW ,3) in reduction R3 results in an effective degradation of O
(
q6
)

(where q denotes qH + qG).

Our Contribution. In this paper, we contemplate a better security bound for GG-IBS and in
particular for the reductionR3. We pin point the source of degradation forR3 and identity ways
to reduce it. To this end, we introduce two notions pertaining to random oracles: “dependency”
and “independency”. Informally speaking, random-oracle dependency involves designing the
hash functions (which are modelled as random oracles) in such a way that the cost of forking
involving two random oracles (as in the MF Algorithm) is reduced to that with single random
oracle (as in the GF Algorithm). Independency, on the other hand, involves the relaxing of an
unnecessary condition that is imposed on the adversary involved in the (nested) replay attack.
It turns out that the notion of independency follows naturally for GG-IBS; dependency, on the
other hand, has to be induced by modifying the construction (to be precise, the hash functions
H and G) of the protocol in a clever manner. Plus, the two notions can be applied in conjunction
and this leads to the nested replay attack being launched far more effectively than specified in
the MF Algorithm: the cost of forking involving two oracles (i.e., O

(
q2
)
) is reduced to that

involving a single oracle (i.e., O (q)). As a result, the effective degradation is reduced to O
(
q3
)
.

The non-trivial aspect is to leverage these two notions in the analysis of the security argument.
To achieve this, we return to the Pointcheval-Stern approach of analysis: i.e., using the Splitting
Lemma. A summary follows.

Outline of our analysis. As already mentioned, the novel contribution of the paper is the
analysis technique. We re-introduce the Splitting Lemma which is used in analysing the security
argument of Schnorr Signature in [PS00]. Recall that the MF Algorithm doesn’t, directly,
involve the Splitting Lemma. However, its analysis (by modelling the adversary as a random
variable) is tantamount to a straightforward extension of the Pointcheval-Stern one, but, using
a Three-Splitting Lemma5 in place of the normal Two-Splitting Lemma. A close inspection
reveals that the degradation incurred by the analysis is inherent to the Three-Splitting Lemma
and, that, it’s unlikely one can come up with a better bound. Our idea is to bypass the Three-
Splitting Lemma altogether. In order to achieve this, we have to impart a structure to the
underlying universe of random tapes which is, otherwise, unstructured. This is exactly where
the notion of (in)dependency comes into the picture: it imparts a beautiful structure to the
underlying tape-set which allows us to apply the Two-Splitting Lemma twice, in a self-similar
fashion (see §3.3 for details).

1.3 Notations

We adopt the notations commonly used in the literature. s ∈R S denotes picking an element
s uniformly at random from the set S. In general, {s1, . . . , sn} ∈R S denotes picking elements

s1, . . . , sn independently and uniformly at random from the set S. In a similar manner, s
$←− S

and {s1, . . . , sn}
$←− S denote random sampling, but with some underlying probability distri-

bution on S. (y1, . . . , yn)
$←− A(x1, . . . , xm) denotes a probabilistic algorithm A which takes

as input (x1, . . . , xm) to produce output (y1, . . . , yn). Sometimes the internal coins ρ of this
algorithm is given explicitly as an input. This is distinguished from the normal input using a
semi-colon, e.g., y ← A(x; ρ).

In reductionist security arguments, Π ≤γ M[P] denotes that Π is γ-reducible to P: given an
adversary against P in the security model M, one can construct an algorithm that breaks Π with
a degradation of γ. Π

γ⇐= M[P] conveys the same message. A straightforward generalisation is

5A generalisation of the Splitting Lemma that accommodates splitting the universe into three sets instead of
just two (see §2.3.)
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M′[P′] ≤γ M[P]: given an adversary against P in the security model M, one can construct an
algorithm that breaks P′ in the security model M′ with a degradation of γ.

Next, we introduce some notations pertaining to random oracles. The symbol < is used to
order the random oracle calls; e.g., H(x) < G(y) indicates that the random oracle call H(x)
precedes the random oracle call G(y). More generally, H < G indicates that the target H-oracle
call precedes the target G-oracle call. The convention applies to hash functions as well. The
symbol, on the other hand, ≺ is used to indicate random oracle dependency; e.g. H ≺ G
indicates that the random oracle G is dependent on the random oracle H. In the discussion
involving the forking algorithms, Qij denotes the jth random oracle query in round i of simulation.

Organisation of the paper. We provide the necessary background in §2. In §3, we describe
the improved version of GG-IBS and its security argument. The major contribution in this
section is the security analysis given in §3.3. Finally, we end with the concluding remarks in
§4. As for the appendix, we begin with relevant forking algorithms and their associated lemmas
in Appendix A. The reduction R′1 is given in Appendix B.

2 Background

We begin the section with the formal definition of IBS along with its security model. We also
define the discrete-logarithm assumption–the hardness assumption on which GG-IBS is based
on. Then, we describe the Splitting Lemma [PS00] which plays a crucial role in the new security
argument for GG-IBS. Finally, for the sake of completeness, we describe the construction of GG-
IBS and a sketch of the fixed security argument due to Chatterjee et al..

2.1 Identity-Based Signatures

Definition 1 (Identity-Based Signature). An IBS scheme consists of four polynomial-time,
probabilistic algorithms {G , E ,S ,V} described below.

Set-up, G(1κ): It takes as input the security parameter κ. It outputs the master secret
key msk and the master public key mpk.

Key Extraction, E (id, msk): It takes as input the user’s identity id, the master secret key
msk to generate a secret key usk for the user.

Signing, S (id,m, usk): It takes as input the user’s identity id, a message m and the user’s
secret key usk to generate a signature σ.

Verification, V (σ, id,m, mpk): It takes as input a signature σ, a message m, an identity id

and the master public key mpk. If outputs a bit b which is 1 if σ is a valid signature on
(id,m) or 0 if the signature is invalid.

The standard correctness condition: 1 ← V (S (id,m, usk), id,m, mpk), should be satisfied for

all id, m, (msk, mpk)
$←− G(1κ) and usk

$←− E (id, msk). As for security, we use the detailed
EU-ID-CMA model given in [BNN04].

Definition 2 (EU-ID-CMA Game6). The security of an IBS scheme in the EU-ID-CMA model
is argued in terms of the following game between a challenger C and an adversary A.

6The security game in [BNN04], i.e. Expuf-cma
IBS,F̄ , is explained in terms of the three oracles: INIT, CORR and

SIGN. Here we use an equivalent formulation in terms of Extract and Signature queries.
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Set-up: C runs G to obtain the master public key mpk and the master secret key msk. It
passes mpk as the challenge master public key to A.

Queries: A can adaptively make extract queries to an oracle Oε and signature queries
to an oracle Os. These queries are handled as follows.

– Extract query, Oε(id): A asks for the secret key of a user with identity id. If
there has already been an extract query on id, C returns the user secret key that
was generated during the earlier query. Otherwise, C uses the knowledge of msk to
run E and generate the user secret key usk, which is then passed on to A.

– Signature query, Os(id,m): A asks for the signature of a user with identity id

on a message m. C first obtains, as specified the extract query, a user secret key usk

corresponding to id. Next, it uses the knowledge of usk to run S and generate a
signature σ, which is passed to A.

Forgery: A outputs a signature σ̂ on an identity îd and a message m̂, and wins the
game if the forgery is i) valid: σ̂ passes the verification on (îd, m̂); and ii) non-trivial: A
has not queried the extract oracle with îd, nor has it queried the signature oracle with
(îd, m̂).

The advantage that A has in the above game, denoted by AdvEU−ID−CMAA (κ), is defined as
the probability with which it wins the above game, i.e.

Pr
[
1← V (σ̂, îd, m̂, mpk) | (msk, mpk)

$←− G(1κ); (σ̂, îd, m̂)
$←− AOε(·),Os(·,·)(mpk)

]
provided σ̂ is a non-trivial forgery on (îd, m̂). An adversary A is said to be an (ε, t, qε, qs)-forger
of an IBS scheme if it has advantage of at least ε in the above game, runs in time at most t and
makes at most qε [resp. qs] extract [resp. signature] queries.

Definition 3 (ID-Security of IBS). We say that an IBS is EU-ID-CMA-secure (ID-secure, in
short) if for any polynomial-time adversary A the function AdvEU−ID−CMAA (κ) is negligible in κ.

Remark 1. If the security argument models the hash functions as random oracles, the security
games are to be modified, appropriately, to accommodate queries to the random oracles.

2.2 Discrete-Logarithm Assumption

Let GDL be a (randomised) group generator: it takes as input a security parameter κ (in unary)
and outputs (G, g, p), where G is a cyclic group of prime order p generated by g.7 The discrete-
logarithm problem (DLP) is defined through the following game between a challenger C and an
adversary A (see Figure 3).

Definition 4 (DLP Game). C invokes the group generator to generate a cyclic group: (G, g, p) $←−
GDL(κ). Next, it sends toA the challenge DLP instance (G, g, p, h), where h := gα with α ∈R Zp.
A wins the game if it correctly finds the discrete logarithm of h (with respect to the generator
g), i.e., α′ = α. The advantage A has solving the DLP is the probability with which it wins
the game, i.e.,

AdvDLPA (κ)
def
= Pr

[
α′ = α : (G, g, p) $←− GDL(κ);α ∈R Zp;α′ ← A(G, p, g, gα)

]
.

Definition 5 (Discrete-Logarithm Assumption). The (ε, t)-discrete-log assumption holds if no
adversary that takes takes time at most t has advantage at least ε in the DLP game. In
general, the discrete-log assumption holds if for all PPT adversaries A the function AdvDLPA (κ)
is negligible in κ; we say that GDL generates DL-secure groups [GG09].

7We sometimes omit the description of the group generator for sake of convenience and, also, consistency.

7



C

DLP

A

DLP(G, g, p, gα)

DLP

α

Figure 3: The DLP Game.

2.3 The Splitting Lemma

Let X and Y be two finite sets (with some underlying probability distribution) with |X| = m
and |Y| = n. Also, let T denote the “universal” set X ×Y. A pair (x, y) ∈ X ×Y is deemed to
be good if it satisfies a certain property. Let V denote the set of all such good pairs. Suppose
that at least γ fraction of the pairs in X × Y are good, i.e., Pr [V] ≥ γ. We define a function
k : X 7→ P(Y) as

k(x) = {y ∈ Y | (x, y) ∈ V}.

k can be used to count, for a particular x, the number of elements y ∈ Y such that (x, y) forms
a good pair. For some β < γ, we define the (sub)set of better pairs of V as

V∗ = {(x, y) ∈ V | |k(x)| ≥ (γ − β)n}.

Thus, a good pair (x, y) is better if x forms good pairs with at least (γ − β) fraction of the
elements of Y.

Lemma 1 (The Splitting Lemma, Pointcheval-Stern [PS00]8). The following propositions hold
on the aforementioned assumptions:

1. Pr [V∗] ≥ β, i.e., at least β fraction of pairs in T are better.

2. Pr
[
(x, y′) ∈ V | (x, y) ∈ V∗; y′ $←− Y

]
≥ γ−β, i.e., given a better pair (x, y), the probability

with which the pair (x, y′) (with y′ sampled randomly from Y) is good is at least γ − β.

3. Pr [V∗ | V] ≥ β/γ, i.e., a good pair is better with a probability of at least β/γ.

2.4 Galindo-Garcia IBS

We discuss, in brief, the construction and security argument of GG-IBS. We refer the reader to
[CKK13] for a more detailed take on GG-IBS.

2.4.1 Construction

The scheme is based on the Schnorr signature scheme [Sch91]. The user secret key can be
considered as the Schnorr signature by the PKG on the identity of the user, using the master
secret key as the signing key. Analogously, the signature on a message by a user is the Schnorr
signature, by that user, on the message using her user secret key as the signing key. The
construction is given below.

8Also refer to [Kia07].

8



Set-up, G(1κ): Generate a group G = 〈g〉 of prime order p. Select z ∈R Zp and set Z = gz.
Return z as the master secret key msk and (G, p, g, Z,H,G) as the master public key mpk,
where H and G are hash functions

H : {0, 1}∗ 7→ Zp and G : {0, 1}∗ 7→ Zp.

Key Extraction, E (id, msk): Select r ∈R Zp and set R := gr. Return usk := (y,R) ∈ Zp×G
as the user secret key, where

y := r + zc and c := H(R, id).

Signing, S (id,m, usk): Let usk = (y,R) and c = H(R, id). Select a ∈R Zp and set A := ga.
Return σ := (b, R,A) ∈ G × Zp ×G as the signature, where

b := a+ yd and d := G(id, A,m).

Verification, V (σ, id,m, mpk): Let σ = (b, R,A), c := H(R, id) and d := G(id, A,m). The
signature is valid if

gb = A(R · Zc)d.

Figure 4: The (Original) Galindo-Garcia IBS.

Remark 2. There are two hash functions in consideration: H and G. H is used to generate
the user secret key which, in turn, is required to sign on a message (using G). Hence H < G
(recall that < denotes ‘followed by’) constitutes the logical order for calling the hash functions.

2.4.2 Security Argument.

Henceforth, we refer to the security argument given in [CKK13]. The security is argued using
three reductions R1, R2 and R3 depending on two events E and F. Briefly, E partitions
the type of adversaries into two, depending on whether it produces a forgery with the same
randomiser; F, on the other hand, further partitions the type of adversaries into two depending
on the order of the target9 G and H indices: G < H or H < G. In all the three cases:
DLP ≤ EU-ID-CMA [GG-IBS]. The differences are highlighted below.

Event Reduction Degradation Forking Algorithm

E R1 O (qεqH) FW

¬E ∧ F R2 O
(
(qH + qG)2

)
MW ,1

¬E ∧ ¬F R3 O
(
(qH + qG)6

)
MW ,3

Table 2: Security Argument from [CKK13].

9The random oracle query that is used by A to produce its desired output is termed the target query and the
index of this query is the target index.
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3 Our Result

In this section, we describe means by which one can give a better bound for the reduction R3.
But first, we try to pin point the source of degradation for R3 and in general for the nested
replay attack with three forking.

3.1 Degradation: A Closer Look

Let’s return to the primary source of degradation for GG-IBS: reduction R3. For i = {0, . . . , 3},
let Ji [resp. Ii] denote the target H-index [resp. G-index] for round i of simulation. (see
Figure 5). The condition for the success of the forkings can be derived from (14) to be

Q0I0+1 Q0q σ0 //round 0

Q0J0+1 Q0I0

Q1I0+1 Q1q σ1 //round 1

Q01 Q02 Q0J0

Q2I0+1 Q2q σ2 //round 2

Q2J0+1 Q2I0

Q3I0+1 Q3q σ3 //round 3

s01

s0J0

s2J0

s0I0

s1I0

s0q

s1q

s2I0

s3I0

s2q

s3q

Figure 5: Successful Multiple-Forking for R3. Q0J0
denotes the target H-query H(R̂, îd) for

round 0; Q0I0 [resp. Q2I0 ] denotes the target G-query G(îd, Â0, m̂) [resp. G(îd, Â1, m̂)] for round 0
[resp. round 2 ].

E : B ∧ C0 ∧ C2 ∧ D2, with the core condition of

(I3, J3) = (I2, J2) = (I1, J1) = (I0, J0). (1)

Each of the equality checks, loosely speaking, contributes to a factor of O
(
q2
)

leading to the
overall degradation of O

(
q6
)
. Our objective of bringing down the overall degradation relies on

relaxing the core condition. This, in turn, is owed to the following observations.

Observation 1 (Independency of I2 and I0). It is not necessary for the target indices of the H
oracle to be the same in round 0 and round 2 (i.e., I2 needn’t match I0).

In order to see this, let’s return to the system of congruences involved in the simulation, i.e.,

{b̂0 = â0 + (r̂+αc0)d0, b̂1 = â0 + (r̂+αc0)d1, b̂2 = â2 + (r̂+αc2)d2, b̂3 = â2 + (r̂+αc2)d3} (2)

What we have is a system of four congruences in the four unknowns {r̂, â0, â2, α} with α being
the solution to the DLP. From the structure of the hash function H, it follows that the index I
corresponds to the unknown â. The process of solving for α starts by eliminating the unknown
â0 [resp. â2] from {b̂0, b̂1} [resp. {b̂2, b̂3}]. What is necessary at this point is that the I indices
must match for round 0 and round 1 [resp. round 2 and round 3 ]. However, eliminating â0 from
{b̂0, b̂1} is not affected by the pair {b̂2, b̂3} and vice versa. Hence, from the point of view of
the reduction, it doesn’t make any difference whether we relax the condition to accommodate
independency–the system of congruences one ends up with is exactly the same as in (2). In fact,
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the reduction is unlikely to achieve anything by restricting the indices. Thus, incorporating
independency simplifies the condition in (1) to

(I3, J3) = (I2, J2) ∧ (I1, J1) = (I0, J0) ∧ (J2 = J0). (3)

Remark 3. The notion of independency can be better appreciated if we visualise the process
of multiple-forking in terms of congruences and unknowns. At a high level, what the reduction
algorithm R3 secures from the MF Algorithm is a set of four congruences in four unknowns.
One of these unknowns is the solution to the DLP. The MF Algorithm needs to ensure that
the congruences are linearly independent of each other with a certain non-negligible probability.
Observation 1 can then be restated as: even if the condition on the I indices is relaxed, we
still end up with a system of four congruences in four unknowns.

Observation 2 (Dependency between H and G). It is possible to modify GG-IBS, the structure
of the hash function G to be precise, such that I1 = I0 implies J1 = J0 (and similarly I3 = I2
implies J3 = J2) with a non-negligible probability.

Recall that the hash functions in the construction of GG-IBS are of the form H(id, R) and
G(id, A,m). Suppose that we modify the structure of G to G(id, A,m, c) where c := H(id, R).
Let’s consider round 1 of simulation for the “modified” GG-IBS initiated by a forking at I0 as in
reduction R3. Suppose that the adversary is successful and, in addition, the target H-index for

Q0I0+1 Q0q round 0

Q01 Q02 Q0J0
Q0J0+1 Q0I0

Q1I0+1 Q1q round 1

s01 s0J0

s0I0

s1I0

s0q

s1q

Figure 6: Oracle replay attack after setting up dependency between the hash functions. Q0J0

denotes the target H-query H(x̂) while Q0I0 corresponds to the target G(ŷ, ĉ) where ĉ = H(x̂).

the round 1 matches with that in round 0 (i.e., I1 = I0). We claim: due to the binding between
the hash functions that we have introduced, the target G-indices for the two rounds also have
to match. The advantage with which an adversary can forge a signature having violated this
condition is, in fact, negligible (see Claim 1). Hence, (I1 = I0) implies (J1 = J0). We say
that the random oracle G is “dependent” on the random oracle H (denoted by H ≺ G) over
these two rounds10. The property holds for round 2 and round 3 as well (i.e. (I3 = I2) implies
(J3 = J2)). As a result, the condition in (3) is further simplified to

(I3 = I2) ∧ (I1 = I0) ∧ (J2 = J0). (4)

The introduction of binding, in fact, brings more to the table. In a particular round of simu-
lation, to forge a signature, an adversary (except with a negligible probability of guessing) has
to make the target random oracle queries in the order H < G (see Claim 1). For example, it
follows in round 0 that (1 ≤ J0 < I0 ≤ q). Thus, as a result of the binding, the logical order is
imposed on the adversary. That brings us to the formal definition of the notion of random-oracle
dependency.

10Intuitively, if a protocol uses two hash functions H1 and H2 in such a way that the input to H2 is a function
of the output of H1, then we say that the H2-call is dependent on the H1-call. This is possible only when there
is an inherent order, a hierarchy, among the hash functions used in the construction of the protocol.
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Definition 6 (Random-Oracle Dependency). Consider the oracle replay attack in the context
of a cryptographic protocol that employs two hash functions H1 and H2 modelled as random
oracles. Let J [resp. I] denote the target H1-index [resp. H2-index] for the first round of
simulation of the protocol. Also, let J ′ [resp. I ′] denote the target H1-index [resp. H2-index] for
the second round of simulation that was initiated by a forking at I. Suppose that the adversary
was successful in both the rounds. The random oracle H2 is defined to be η-dependent on
the random oracle H1 on the target query (denoted by H1 ≺ H2) if the following criteria are
satisfied: i) (1 ≤ J < I ≤ q) or, in other words H1 < H2; and ii) Pr[(J ′ 6= J) | (I ′ = I)] ≤ η.

The second criterion, in other words, requires I ′ = I =⇒ J ′ = J with probability at least
(1 − η); for the criterion to hold with overwhelming probability, η should be negligible in κ.
A little more specifically, H2 is said to be fully-dependent on H1 if η = 0, i.e. (I ′ = I) =⇒
(J ′ = J). But for most applications, it suffices that J be η-dependent on I for some η which is
negligible.

Although dependency forces an order among the hash functions, the reverse may not be
true–a logical order among the hash functions in the protocol does not necessarily translate
into dependency between them. Hence, one may need to impose explicit dependency among
the hash functions. A natural way to induce the dependency H1 ≺ H2 is by making the input
to H2 a function of H1’s output (like the binding we introduced for GG-IBS).

Next, we formally argue that the binding in GG-IBS does indeed translate into a dependency
between the random oracles (see Figure 7 for a detailed construction).

Claim 1 (Dependency for modified GG-IBS). The random-oracle dependency of H ≺ G with
η := q(q − 1)/p applies to the modified GG-IBS.

Argument. Consider an adversary A against the modified GG-IBS. Let’s suppose that it pro-
duces a valid, non-trivial forgery σ̂ = (b̂, R̂, Â) on (îd, m̂) at the end of one round of simulation.
Let J [resp. I] denote the index of the target H-query H(îd, R̂) [resp. G-query G(m̂, Â, c),
where c := H(îd, R̂)] for the round. It can be established11 that 0 < I, J ≤ q. Now, there are
two possibilities: H < G and G < H. Let’s look at the second of the cases. Since G takes c
as an input, G < H is plausible only if A correctly anticipates the value of c. Thus, for A to
have a non-negligible advantage, it has to make the two target queries and in the order H < G.
Simply put, the random oracles satisfy the first criterion.

Next, we simulate A again after forking at I. Let (I ′, J ′) be the target indices for this
round. In order to establish that the random oracles satisfy the second criterion, let’s assume
the contrary: I ′ = I but J ′ 6= J . Since I ′ = I, A has to forge a signature σ̂′ = (b̂′, R̂′, Â) on
(îd
′
, m̂) such that H(îd

′
, R̂′) = c. This, in turn, is tantamount to a collision of the random

function corresponding to H and, as per the birthday bound, the probability of this event is
q(q− 1)/p. Moreover, provided that q � p the value is negligible12. By implication, the second
criterion is also satisfied.

More generally:

11Let S denote the event that A successfully forges σ̂ = (y,R) on some message m̂. In addition, let H denote
the event that A queries the random oracle with H(m̂,R)–the “target” H-oracle query. Thus, we have

Pr [S] = Pr [S ∧ H] + Pr [S ∧ ¬H]

= Pr [S ∧ H] + Pr [S | ¬H] Pr [¬H] .

The term S|¬H indicates that A has forged successfully, but, without actually having made the target H-oracle
query H(m̂,R). However, the value of H(m̂,R) is necessary in order to forge. Therefore, in this situation, the
best that the adversary can do to conjure up with the value of H(m̂,R) is to guess it. However, the probability
with which the adversary could have correctly anticipated the output is negligible (1/p to be precise). Thus the
Pr [S | ¬H] term (weighed down by the 1/p factor) is negligible and as a result Pr [S] ≈ Pr [S ∧ H]. Simply put,
A has to make the target random oracle query to be able to forge with a non-negligible probability.

12To be precise, q is polynomial in κ whereas 1/p is a negligible function in κ. Plus, the product of a polynomial
and a non-negligible function is still non-negligible.
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Claim 2 (Binding induces dependency). Consider the hash functions (and the corresponding
random oracles) described in Definition 1. Let q1 denote the upper bound on the number of
queries to the random oracle H1. In addition, let R1 denote the range of H1. Binding H2 to
H1 (by making the input to H2 a function of H1’s output) induces a random-oracle dependency
H1 ≺ H2 with ηb := q1(q1 − 1)/|R1|.

Argument. The line of argument is the same as in Claim 1.

Remark 4. Assuming q1 to be polynomial and |R1| to be exponential in κ, the value of ηb
is asymptotically negligible. Now, let’s consider a concrete setting, say 80-bit security level.
Assuming typical values of q1 := 260 and |R1| := 280, the value can no longer be ignored.
However, if we take into consideration the degradation in Theorem 1, we end up choosing
|R1| := 2260 rendering ηb negligible. Hence, we can safely assume full-dependency in subsequent
discussions.

The consequences of (in)dependency. In a nutshell, our observations affect the security
of GG-IBS in the following ways.

(i) We saw that, once (in)dependency is taken into consideration, the condition for success of
the multiple forkings is simplified to (4). Intuitively, this would bring down the degradation
to O

(
q3
)
.

(ii) The incompleteness of B2 stems from the fact that the simulator cannot really restrict the
order in which the adversary makes the two target random oracle queries. In [CKK13],
the issue was fixed using the two-reduction strategy. By imposing the logical order H < G
through dependency, we can do away with the events F and ¬F and hence the reduction
R2. This leads to a simpler event structure.

As we will see in the next section, we end up with a cleaner, tighter security argument for
GG-IBS.

3.2 Galindo-Garcia IBS, Improved

We begin by describing, in detail, the GG-IBS scheme in which the binding required to induce
the dependency H ≺ G has been set up.13 The construction is same as in Figure 4 save
for the structure of the hash function G, which is now a function of c := H(id, R) (boxed in
Figure 7). The binding that we have introduced is more refined14 than the one suggested in
Observation 2.

Set-up, G(1κ): Generate a group G = 〈g〉 of prime order p. Select z ∈R Zp and set Z = gz.
Return z as the master secret key msk and (G, p, g, Z,H,G) as the master public key mpk,
where H and G are hash functions

H : {0, 1}∗ ×G 7→ Zp and G : {0, 1}∗ ×G × Zp 7→ Zp.

13A noteworthy observation is that, setting up the random-oracle dependency G ≺ H in GG-IBS allows more
efficient reductions to DLP. However, this disturbs the “logical” order of the random oracles from the protocol’s
perspective. In such a protocol, the PKG will have to issue private keys for each message to be signed, rendering
it impractical.

14Recall that the suggestion in Observation 2 was to set d := G(id, A,m, c) where c := H(R, id). However,
id is redundant here as it is anyways captured indirectly by c.
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Key Extraction, E (id, msk): Select r ∈R Zp and set R := gr. Return usk := (y,R) ∈ Zp×G
as the user secret key, where

y := r + zc and c := H(id, R).

Signing, S (id,m, usk): Let usk = (y,R) and c = H(id, R). Select a ∈R Zp and set A := ga.
Return σ := (b, R,A) ∈ G × Zp ×G as the signature, where

b := a+ yd and d := G(m,A, c) .

Verification, V (σ, id,m, mpk): Let σ = (b, R,A), c := H(id, R) and d := G(m,A, c) . The

signature is valid if
gb = A(R · Zc)d.

Figure 7: Galindo-Garcia IBS with binding.

3.2.1 Security Argument

Once the binding is in place, the adversary is bound to make the target queries in the logical
order (except with a negligible probability, see Claim 1). This simplifies the event structure
of the security argument to quite an extent and, accordingly, it consists of only two reductions
R′1 and R′3.

Theorem 1. Let A be an (ε, qε, qH, qG)-adversary against GG-IBS in the EU-ID-CMA model. If
the hash functions H and G are modelled as random oracles, we can construct either

(i) Algorithm R′1 that ε2/(2 exp(1)qGqε)-breaks the DLP, or

(ii) Algorithm R′3 that ε4/64(qH + qG)3-breaks the DLP.

Here qε denotes the upper bound on the number of extract queries that A can make; qH [resp.
qG] denotes the upper bound on the number of queries to the H-oracle [resp. G-oracle]. exp is
the base of natural logarithm. (Plus, for simplicity, we have assumed both 1/p and q(q − 1)/p
to be negligible).

Argument. Recall the events E and ¬E that were defined in the security argument of GG-IBS.
In the case of the event E [resp. ¬E] we give a reduction R′1 [resp. R′3] to the DLP. R′1 can be
regarded to be a simplified version of the reduction R1 confined to handling the order H < G
(recall that R1 is equipped to handle both the orders). As the gist of the reduction R′1 is the
same as in R1 given in [CKK13, §3], we relegate it to Appendix B. As for R′3, the simulation
of one round of the adversary, as well as the manner in which it is forked is the same as plotted
in R3. However, we use the Rewinding Technique ([PS00]) instead of the MF Algorithm, as
shown in Figure 8. The novelty lies in exploiting (in)dependency for the fruition of a better
security bound. Hence, we focus on the probability analysis.

3.3 Analysis

On a high level, the analysis involves two iterations of the Splitting Lemma (Lemma 1) on
different, but correlated, underlying sets. Consequently, we have two base notions of “good”:
good and good(1). In addition, we have a higher notion of good(3) which we, ultimately, intend
to bound.
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Conventions. T denotes the universe of random tapes participating in a single round of
simulation of the adversary. This includes the internal coins of the adversary as well as the
randomness from the random functions associated to the two random oracles, the signature
oracle and the extract oracle. T(1) denotes the universe of random tapes involved in two rounds
of simulation resulting from the forking of the G-oracle. Thus, T(1) is defined as

T(1) =

q⋃
i=2

T(i−) × T2
(i+). (5)

Here, T(i−) denotes the set of all random tapes involved in the simulation before the adversary

makes the query Q0i , whereas T(i+), those after the query Q0i .
15 Note that T(1) consists of the

partitions (T(2−) × T2
(2+)), (T(3−) × T2

(3+)) and (T(q−) × T2
(q+)). We use the shorthand T(1,j<)

[resp. T(1,j>)] to denote the union ∪ji=2(T(i−) × T2
(i+)) [resp. ∪qi=j+1(T(i−) × T2

(i+))]. Thus,
T(1) = T(1,j<) ∪ T(1,j>). Finally, T(3) denotes the universe of random tapes for all four rounds

of simulation16 with the adversary forked as per the illustration in Figure 8. We follow the
same subscripting convention for individual tapes as well with the round is indicated in the
superscript; e.g., T0(i−) denotes the random tape involved in the first round of simulation up till

the adversary makes the query Q0i (see Figure 8).

. .

· Q0I0

. .

· Q0J0

. .

· Q2I2

. .

T0(J0−)

T0(J0I0)

T0(I0+)

T1(I0+)

T2(J0I2)

T2(I2+)

T3(I2+)

Figure 8: The tapes involved in the nested replay attack involving three forkings (carried out
using the Rewinding Technique).

Defining the notions of “good”. A tape in set T is deemed to be good if it leads to the
adversary successfully forging. Thus, by definition, at least ε fraction of the tapes in T are

15Keep in mind that the set T(i−) can be further represented by the Cartesian product of the two sets T(j−)

and T(ji) as shown below.

T(1) =

q⋃
i=2

(
T(j−) × T(ji)

)
× T2

(i+)

Here T(j−) denotes the set of all random tapes involved in the simulation before the adversary makes the query

Q0
j , whereas T(ji) denotes those from the query Q0

j to the query Q0
i . In fact, this representation is in agreement

with the Figure 8 more than the one in (5).
16It can be worked out that the universe of tapes for three forkings is

T(3) =

q−1⋃
j=1

(
T(j−) ×

(
q⋃

i=j+1

(
T(ji) × T2

(i+)

))2)
.

.
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good. However, the refined notion for good is a bit different as there are two random oracles
in consideration. A tape in set T is deemed to be good(j,i) if it leads to the adversary forging
successfully and with a target H-index of j and a target G-index of i. In addition, good(j,∗)
denotes a tape which leads to the adversary forging successfully with a target H-index i and
any target G-index. In a analogous manner, we define the notion of good(∗,i).

17

In the case of GG-IBS, there are two random oracles in consideration. Thus, the “higher”
notion of good(1) could be applied to tapes participating in replay of either of these oracles. But,
as we are concerned with the replay of the G-oracle in the first two rounds of the nested replay
attack (see Figure 8), the underlying set for which the notion of good(1) applies is defined to
be T(1). A triplet of tape segments (T(I−), (T(I+), T

′
(I+))) ∈ T(1) is considered to be good(1) if

the tapes T = (T(I−), T(I+)) and T′ = (T(I−), T
′
(I+)) are both good(∗,I). To paraphrase, the tape

is good(1) if the replay of the G-oracle using tapes T and T′ is successful. We define the refined
notions of good(1,j,i), good(1,∗,i) and good(1,j,∗) the same way we had defined it for the notion of
good. Finally, a tape in T(3) is good(3) if the nested replay attack launched as in Figure 8 using
the tape is successful. Keeping these notions in mind, we proceed to the probability analysis of
the nested replay attack.

Probability Analysis. Our objective is to lower bound the fraction of good(3) tapes in T(3)
in terms of the fraction of good tapes in T. This is accomplished through three claims: Claim 3
through Claim 5, which, in turn, requires two iterations of the Splitting Lemma (Lemma 1).
The objective of the first iteration of the Splitting Lemma (in Claim 3) is to establish a
lower bound on the fraction of good(1) tapes in T(1), in terms of the fraction of good tapes in

T. This bound is, in turn, to be used in the second iteration (in Claim 5) to lower bound
the fraction of good(3) tapes in T(3). However, the second iteration is far more involved than
the first iteration–we need an intermediate Claim 4. Nevertheless, the usage of the Splitting
Lemma, on a high level, is (self) similar to that in the first iteration; it’s the underlying set,
the associated probabilities and the notion of “good” that differs. Let’s focus on the first two
rounds of simulation of the adversary (see Figure 8).

Claim 3. At least ε2/4q fraction of the tapes in T(1) are good(1).

Argument. The analysis, because of dependency, turns out to be similar to analysing the two
rounds of the elementary replay attack bar the definition of the notion of “good”–we use the
notion of good(∗,i) in place of good(i). Let’s presume that εi fraction of the tapes in T are
good(∗,i). Thus, we have

q∑
i=1

εi =

q∑
i=2

Pr [I = i ∧ J > 0]

= Pr [1 ≤ J < I ≤ q] = ε (by definition). (6)

We assume that T is bijective to T(i−)×T(i+) through a “join” function (denoted by ‖) and

a “split” function.18 The notion of good(∗,i), which we defined for the set T, is adapted for the
set T(i−) × T(i+) through the split and join functions . A tape (T(i−), T(i+)) ∈ T(i−) × T(i+) is

17The notion of good(j,i), in conjunction with the Three-Splitting Lemma, yields a (more) direct analysis.
However, the resulting bound is alike the MF Lemma (Lemma 3). The key to an improved analysis requires
circumventing the notion of good(j,i) through the notion of good(1) and, its refinements, good(1,j,∗) and good(1,∗,i).
This, in turn, is made possible by our observations in §3.1–i.e., through (in)dependency.

18The “join” function fi concatenates the two constituent tape segments from the set T(i−) × T(i+) into a
single tape in set T, i.e., fi(T(i−), T(i+)) := T(i−)‖T(i+). Provided that fi is bijective, the inverse of fi would be
the function which “splits” a tape T into the two constituent tape segments T(i−) and T(i+) depending upon the

random oracle query Qi, i.e., f−1
i (T) := (T(i−), T(i+)). Note that the definition of fi does not dependent of i and

hence we consider a single join function f.
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deemed to be good(∗,i) if its counterpart in T is good(∗,i). We denote the (sub)set of all such
tapes in T(i−) × T(i+) by Vi. Also, suppose that at least βi fraction of tapes in T(i−) × T(i+)

are better(∗,i). On these underlying assumptions, the analysis proceeds in a manner (almost)
similar to that of the elementary replay attack (using the Rewinding Technique). Thus, we may
conclude that the first two rounds of the nested replay attack are successful with a probability
of at least ε2/4q. Moreover, it follows from the definition (of good(1)) that at least ε2/4q fraction
of tape segments in T(1) are good(1).

The second iteration of the Splitting Lemma is a bit trickier than the first one. We have
to prime the set T(1) before actually applying the Splitting Lemma. The partitions of the set

T(1) come into play. Let’s focus on a particular partition (T(i−) × T2
(i+)). It is not difficult to

infer that the set of good(1,∗,i) tapes in T(1), in fact, all belong19 to the partition (T(i−)×T2
(i+)).

These good(1,∗,i) elements can be further partitioned, depending on their target H-index, into
subsets containing the good(1,j,i) elements. The set of all such good(1,j,i) elements, across the
partitions (of T(1)), form the good(1,j,∗) elements of T(1). Let δj denote the fraction of all such
tapes in T(1). By implication,

q−1∑
j=1

δj =

q−1∑
j=1

Pr [J1 = J0 = j ∧ I1 = I0 ∧ 1 < I0 ≤ q]

= Pr [J1 = J0 ∧ I1 = I0 ∧ 1 ≤ J0 < I0 ≤ q]
≥ ε2/4q (using Claim 3) (7)

That brings us to our second claim.

Claim 4. At least δj fraction of tapes in T(1,j>) are good(1,j,∗).

Argument. Let’s presume that the tape involved in the first two rounds of simulation (the replay
of G-oracle) was good(1,j,i). Our argument relies on two observations: i) the candidate tapes
for the replay of the H-oracle belong to T(1,j>); and ii) a good(1,j,∗) element cannot belong to
T(1,j<). The first of the observations follows by definition, whereas the second–a consequence
of dependency between the two random oracles–requires some explanation. Let’s assume the
contrary: a tape is good(1,j,∗) and it belongs to T(1,j<). Consequently, it is good(1,j,i) for some
i < j. However, the dependency H ≺ G means that an adversary has to make the target
queries in the order H < G which, in turn, implies j < i (leading to a contradiction). Thus, the
good(1,j,∗) elements all belong to T(1,j>).

The two observations, in conjunction with the fact that T(1,j>) is a subset of the set T(1) (of

which at least δj fraction are good(1,j,∗) elements) completes the proof.

Claim 5. The fraction of good(3) tapes in T(3) is at least ε4/64q3.

Argument. Let’s assume that the tape involved in the first two rounds of simulation T0(1) :=

(T0(I0−), (T
0
(I0+), T

1
(I0+))) is good(1,J0,I0). We further split the tape segment T0(I0−) into two: T0(J0−)

and T0(J0I0)
. Here, T0(J0−) is the tape involved in the simulation before the adversary makes the

target query Q0J0
, whereas T0(J0I0)

, that from the query Q0J0
up to the query Q0I0 (see Figure 8).

Thus, an alternative representation of the tape T0(1) is

T0(1) :=
(
T0(J0−), T

0
(J0I0)

,
(
T0(I0+), T

1
(I0+)

))
:=
(
T0(J0−), T

0
(1,J0I0+)

)
(using shorthand notation)

19Strictly speaking, we have to take into consideration the non-core conditions.
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The simulator, next, proceeds with the remaining two rounds of simulations by forking at Q0J0

and Q2I2 (in that order). Let T2(1,J0I2+) := (T2(J0I2)
, (T2(I2+), T

3
(I2+))) ∈ T(1,J0I2+) denote the tapes

involved in the aforementioned simulation. Thus, we end up with the tapes given in Figure 8.
The nested replay attack, all four rounds of it, is successful if the tape

T2(1) :=
(
T0(J0−),

(
T2(J0I2)

,
(
T2(I2+), T

3
(I2+)

)))
turns out to be good(1,J0,I2) (note that I2 need not be the same as I0). Our objective is to find
the probability of this particular event using the Splitting Lemma. This requires T(1) to be split

into T(J0−) and ∪qi=J0
(T(J0i)

×T2
(i+)). This, in turn, can be achieved by splitting the individual

partitions of T(1). But note that not all of the partitions in T(1) can be split in such a way.

In fact, by definition, it is viable only to the partitions (T(i−) × T2
(i+)) for i > J0, i.e. the set

T(1,J0>). At this point Claim 4 comes into play. It allows us to apply the Splitting Lemma to

the “reduced” universe of T(1,J0>) (by ensuring that at least δJ0 fraction of the tapes in T(1,J0>)

too are good(1,J0,∗)). We are now ready to apply the Splitting Lemma.
Let’s assume that an arbitrary λj fraction of the tapes in T(1) (and hence T(1,J0>)) are

better(1,j,∗). We denote the (sub)set of good(1,J0,∗) elements and the better(1,J0,∗) elements in
T(1,J0>) by UJ0

and U∗J0
respectively. For ease of analysis, we use the sufficient condition that

the tape T0(1) be good(1,J0,∗) and the T2(1) be better(1,J0,∗). Let’s denote the probability of this

event (with the tapes sampled as described above) by δ′J0
, i.e.,

δ′J0
= Pr

[(
T0(J0−), T

0
(1,J0I0+)

)
∈ U∗J0

∧
(
T0(J0−), T

2
(1,J0I2+)

)
∈ UJ0

]
= Pr

[(
T0(J0−), T

2
(1,J0I2+)

)
∈ UJ0

|
(
T0(J0−), T

0
(1,J0I0+)

)
∈ U∗J0

]
· Pr

[(
T0(J0−), T

0
(1,J0I0+)

)
∈ U∗J0

]
= (δJ0 − λJ0)λJ0 (using propositions 1 and 2 of Lemma 1) (8)

The above expression attains a maxima of δ2J0
/4 at the point λJ0 = δJ0/2. Now, the probability

that the nested oracle replay attack is successful for any J0 is given by

δ′ =

q−1∑
J0=1

δ′J0
≥

q−1∑
J0=1

δ2J0

4

≥ ε4

64q3
(using Hölder’s inequality and (7)) (9)

Significance of (in)dependency. Dependency plays a crucial role in the first two claims.
It is the first criterion of Definition 6 which allows us to apply the Splitting Lemma to a
reduced universe of tapes in Claim 4. The second criterion of dependency comes into play
in Claim 3. It ensures: if, indeed, the two tapes (T(I−), T(I+)) and (T(I−), T

′
(I+)) are both

good(1,∗,I), then they have the same target H-index as well. In fact, this is the sole reason
why the analysis proceeds as for the elementary replay attack. These two handles, together,
reduce the degradation by O

(
q2
)
. Independency, on the other hand, is used in Claim 5.

Recall that a good(1,∗,i) can only belong to the partition (T(i−)×T2
(i+)). Without independency,

the set of candidate tapes (for replay of the H-oracle at a particular index j) is restricted to
(T(i−) × T2

(i+)). But, relaxing this condition (i.e., incorporating independency) “expands” the

set of candidate tapes to T(1,j>). On a high level, this reduces the degradation by O (q). Apply

the two observations together, the degradation is reduced by O
(
q3
)
.
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3.4 Taking Stock

It is evident that the modified GG-IBS allows far tighter reductions. The effective degradation is
reduced from O

(
(qH + qG)6

)
to O

(
(qH + qG)3

)
(see Table 3). The “gain”, which is substantial,

is by the virtue of the multiple forkings being replaced, on a high level, by (two) general forkings.
This, in turn, is endowed by our observations in §3.1.

Scheme Security Argument

GG-IBS [CKK13]

Reduction R1 R2 R3

Forking FW MW ,1 MW ,3

Degradation O (qGqε) O
(
(qH + qG)2

)
O
(
(qH + qG)6

)

Modified GG-IBS (Figure 7)

Reduction R′1 R′3

Forking FW Nested rewinding with (in)dependency

Degradation O (qGqε) O
(
(qH + qG)3

)
Table 3: Degradation for the original and modified GG-IBS. qG [resp. qH] denotes the upper
bound on the H-oracle [resp. G-oracle] queries, whereas, qε denotes upper bound on the extract
queries.

The characteristic expression. The replay attack (involving one oracle) launched using
Rewinding Technique is captured, essentially, by the expression:

ε′ ≥ 1

4

q∑
i=1

ε2i (10)

under the set of constraints: i)
∑q

i=1 εi = ε, and ii) (0 ≤ εi ≤ 1)i∈{1,...,q}. We say that (10)
is the characteristic expression for the Rewinding Technique. Although the analysis of the GF
Algorithm is handled in a different manner, the analyses are au fond simliar: the two approach
are connected through the characteristic expression (10). On maximising (10) under the set of
constraints given above, we end up with the bound given in Forking/GF Lemma.

The analysis in [PS00] can be, straightforwardly, extended to analyse the nested replay
attack via rewinding (but) using a Three-Splitting Lemma20. For a general nested replay with
n forkings, the resulting characteristic expression is:

ε′ ≥
q∑
j=1

q∑
i=1

εn+1
ij (11)

under the set of constraints
q∑
j=1

q∑
i=1

εij = ε and (0 ≤ εij ≤ 1)(i,j)∈{1,...,q}2 . (12)

The expression attains a minima of εn+1/q2n at the point εij = ε/q2 for 1 ≤ i, j ≤ q, and
hence the success probability of Ω(ε4/q6). The characteristic expression for the analysis of MF
Algorithm (using the random variable approach), again, agrees with (11)

20A generalisation of the Splitting Lemma that accommodates splitting the universe into three sets (see §2.3.).
To be precise, one has to use an (εi, εi/2, εi/4)-Three-Splitting Lemma.
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By deploying (in)dependency, we have managed to come up with an optimal characteristic
expression for nested replay attack (with three forkings). The second iteration of the Splitting
Lemma, on a high level, seems to be similar to the first one. This is reflected in the characteristic
expressions21

δ′ ≥
q−1∑
j=1

δ2j and ε′ ≥
q∑
i=2

ε2i

under the set of constraints

q−1∑
j=1

δj = ε′ ,

q∑
i=2

εi = ε and (0 ≤ εi, δj ≤ 1)i,j∈{1,...,q}.

Clearly, there is a degree of self-similarity in the two expressions and, in addition, the expressions
themselves are quite disparate from that of the nested replay attack (and the MF algorithm for
n = 3) in (11).

4 Conclusion

In this paper, we used the notion of (in)dependency to come up with a cleaner, tighter security
argument for GG-IBS: the effective degradation is down from O

(
q6
)

to O
(
q3
)
. The bound on

security reductions for the Schnorr signature has been well-studied [PV05, GBL08, Seu12]. In
the same vein, giving a bound on the reductions for GG-IBS scheme would be an interesting
problem to pursue. In addition, studying the effect of (in)dependency on the MF Algorithm,
and finding other applications for random-oracle dependency should also be worthwhile.
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A Forking Algorithms

A.1 General Forking

We reproduce the GF Algorithm from [BN06] followed by the statement of the GF lemma. We
use slightly different notations to maintain uniformity.

Forking Algorithm. Fix q ∈ Z+ and a set S such that |S| ≥ 2. Let W be a randomised
algorithm that on input a string x and elements s1, . . . , sq ∈ S returns a pair (I, σ) consisting
of an integer 0 ≤ I ≤ q and a string σ. The forking algorithm FW associated to W is defined
as Algorithm 1 below.

Algorithm 1 FW (x)

Pick coins ρ for W at random

{s01, . . . , s0q} ∈R S; (I0, σ0)←W (x, s01, . . . , s
0
q ; ρ) //round 0

if (I0 = 0) then return (0,⊥,⊥)

{s1I0 , . . . , s
1
q} ∈R S; (I1, σ1)←W (x, s01, . . . , s

0
I0−1, s

1
I0
, . . . , s1q ; ρ) //round 1

if (I1 = I0 ∧ s1I0 6= s0I0) then return (1, σ0, σ1)
else return (0,⊥,⊥)
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Lemma 2 (General Forking Lemma [BN06]). Let GI be a randomised algorithm that takes no
input and returns a string. Let

gfrk := Pr
[
(b = 1) | x $←− GI ; (b, σ, σ)

$←− FW (x)
]

and

acc := Pr
[
I ≥ 1 | x $←− GI ; {s1, . . . , sq} ∈R S; (I, σ)

$←−W (x, s1, . . . , sq)
]
,

then

gfrk ≥ acc ·
(

acc

q
− 1

|S|

)
. (13)

A.2 Multiple-Forking Algorithm

We describe the Multiple-Forking Algorithm [BPW12] with some notational changes. The
success condition and the lemma that governs the success probability follows the algorithm.

The Multiple-Forking Algorithm Fix q ∈ Z+ and a set S such that |S| ≥ 2. Let W be
a randomised algorithm that on input a string x and elements s1, . . . , sq ∈ S returns a triple
(I, J, σ) consisting of two integers 0 ≤ J < I ≤ q and a string σ. Let n ≥ 1 be an odd integer.
The MF Algorithm MW ,n associated to W and n is defined as Algorithm 2 below.

Algorithm 2 MW ,n(x)

Pick coins ρ for W at random

{s01, . . . , s0q} ∈R S;
(I0, J0, σ0)←W (x, s01, . . . , s

0
q ; ρ) //round 0

if ((I0 = 0) ∨ (J0 = 0)) then return (0,⊥) //Condition ¬B

{s1I0 , . . . , s
1
q} ∈R S;

(I1, J1, σ1)←W (x, s01, . . . , s
0
I0−1, s

1
I0
, . . . , s1q ; ρ) //round 1

if
(
(I1, J1) 6= (I0, J0) ∨ (s1I0 = s0I0)

)
then return (0,⊥) //Condition ¬C0

k := 2
while (k < n) do
{skJ0

, . . . , skq} ∈R S;

(Ik, Jk, σk)←W (x, s01, . . . , s
0
J0−1, s

k
J0
, . . . , skq ; ρ) //round k

if
(

(Ik, Jk) 6= (I0, J0) ∨ (skJ0
= sk−1J0

)
)

then return (0,⊥) //Condition ¬Dk

{sk+1
Ik

, . . . , sk+1
q } ∈R S;

(Ik+1, Jk+1, σk+1)←W (x, s01, . . . , s
0
J0−1, s

k
J0
, . . . , skIk−1, s

k+1
Ik

, . . . , sk+1
q ; ρ) //round k+1

if
(

(Ik+1, Jk+1) 6= (I0, J0) ∨ (sk+1
I0

= skI0)
)

then return (0,⊥) //Condition ¬Ck

k := k + 2
end while
return (1, {σ0, . . . , σn})
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The success condition. The success of the MF Algorithm is determined by the set of con-
ditions A0 := {B,C0, . . . ,Cn−1,C2, . . . ,Dn−1} where

B : (I0 ≥ 1) ∧ (J0 ≥ 1)

Ck : (Ik+1, Jk+1) = (Ik, Jk) ∧ (sk+1
Ik
6= skIk) (for k = 0, 2, . . . , n− 1)

Dk : (Ik, Jk) = (I0, J0) ∧ (skJ0
6= sk−1J0

) (for k = 2, 4, . . . , n− 1) (14)

To be precise, the MF Algorithm is successful in the event E that all of the conditions in A0

are satisfied, i.e.,

E : B ∧
(
C0 ∧ C2 ∧ · · · ∧ Cn−1

)
∧
(
D2 ∧ D4 ∧ · · · ∧ Dn−1

)
. (15)

The probability of this event, which is denoted by mfrk , is bounded by the MF lemma given
below.

Lemma 3 (The Multiple-Forking Lemma [BPW12]). Let GI be a randomised algorithm that
takes no input and returns a string. Let

mfrk := Pr
[
(b = 1) | x $←− GI ; (b, {σ0, . . . , σn})

$←−MW ,n(x)
]

and

acc := Pr
[
(I ≥ 1) ∧ (J ≥ 1) | x $←− GI ; {s1, . . . , sq} ∈R S; (I, J, σ)

$←−W (x, s1, . . . , sq)
]

then

mfrk ≥ acc ·
(

accn

q2n
− n

|S|

)
. (16)

B Reduction R′1
Let ∆ := (G, p, g, gα) be the given DLP instance. The reduction involves invoking the GF
Algorithm on the wrapper W as shown in Algorithm 3. As a result, it obtains a set of two
congruences in two unknowns and solves for α.

Algorithm 3 Reduction R′1(∆)

Select z ∈R Z∗p as the msk and set mpk := (G, g, p, gz).
(b, σ0, σ1)

$←− FW ((mpk, msk), gα)

if (b = 0) then return ⊥ //abort1,2
Parse σi as (b̂i, ci, ri, βi, di).
Let β := β0, c := c0 and r := r0
if β = 0 then return ((b̂0 − b̂1)− zc(d0 − d1))

/
r(d0 − d1)

else return ⊥ //abort1,3
end if

The Wrapper

Suppose that q := qG and S := Zp. W takes as input the master keys (mpk,msk), the problem
instance gα and s1, . . . , sq. It returns a pair (I, σ) where I is an integer that refers to the target
G-query and σ is the side-output. In order to track the index of the current G-oracle query, W
maintains a counter `, initially set to 1. It also maintains a table LH [resp. LG] to manage the
random oracle H [resp. G]. W initiates the EU-ID-CMA game by passing mpk as the challenge
master public key to the adversary A. The queries by A are handled as per the following
specifications.
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(a) Random oracle query, H(id, R): LH contains tuples of the form

〈id, R, c, r, β〉 ∈ {0, 1}∗ ×G × Zp × Zp ∪ {⊥} × {0, 1, φ}.

Here, (id, R) is the query to the H-oracle and c is the corresponding output. Therefore,
a query H(id, R) is fresh if there exists no tuple 〈idi, Ri, ci, ri, βi〉 in LH such that (idi =
id) ∧ (Ri = R). If such a tuple exists, then the oracle has to return the corresponding ci
as the output. The role of the r and β-field is the same as in R1. We now explain how the
fresh H-oracle queries are handled. The query may be

(i) H1, Explicit query made by A: In this case W returns c ∈R Zp as the output.
〈id, R, c,⊥, φ〉 is added to LH.

(ii) H2, Explicit query made by W : As in the previous case, W returns c ∈R Zp as the
output. As W knows r = logg R, 〈id, R, c, r, 1〉 is added to LH.

(iii) H3, Implicit query by W in order to answer a signature query made by A: See step
(iii) of Signature query on how to program the random oracle in this situation.

(b) Random oracle query, G(m,A, c): LG contains tuples of the form

〈m,A, c, d, `〉 ∈ {0, 1}∗ ×G × Zp × Zp × Z+.

Here, (m,A, c) is the query to the G-oracle and d is the corresponding output. The index
of the query is stored in the `-field. Therefore, a random oracle query G(m,A, c) is fresh if
there exists no tuple 〈mi, Ai, ci, di, `i〉, in LG such that (mi = m) ∧ (Ai = A) ∧ (ci = c). If
such a tuple exists, then the oracle has to return the corresponding di as the output. We
now explain how the fresh G-oracle queries are handled. The query may be

(i) G1, Explicit query made by either A or W : In this case W returns d := s` as the
output. 〈m,A, c, d, `〉 is added to LG and ` is incremented by one.

(ii) G2, Implicit query byW in order to answer a signature query made by A: See steps (i)
and (iii) of Signature query on how to program the random oracle in this situation.

(c) Extract query, Oε(id):

If there exists a tuple 〈idi, Ri, ci, ri, βi〉 in LH such that (idi = id) ∧ (ri 6= ⊥)

(i) If βi = 0, W aborts (abort1,1).

(ii) Otherwise, βi = 1 and W returns usk := (ri + zci, Ri) as the user secret key.

Otherwise

(iii) W chooses r ∈R Zp, sets R := gr and queries the H-oracle for c := H(id, R). It
returns usk := (r + zc,R) as the secret key.

(d) Signature query, Os(id,m):

If there exists a tuple 〈idi, Ri, ci, ri, βi〉 in LH such that (idi = id) ∧ (ri 6= ⊥)

(i) If βi = 0, W selects s,∈R Zp and sets d := s`, A := gs(gα)−rid. It then adds
〈m,A, c, d, `〉 to LG (deferred case G2)

22 and increments ` by one. The signature
returned is σ := (A, s+ zcd,Ri).

(ii) Otherwise, βi = 1 and the user secret key is usk := (y,Ri), where y = ri + zci
and Ri = gri . W then selects a ∈R Zp, sets A := ga and queries the G-oracle
with d := G(m,A, ci). The signature returned is σ := (a+ yd,Ri, Ai).

22 In the unlikely event of there already existing a tuple 〈mi, Ai, ci, di, `i〉 in LG with (mi = m) ∧ (Ai =
A)∧ (ci = c) but (di 6= d) then G(m,A, c) cannot be set to d. In that case W can simply increment ` and repeat
step (i).
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Otherwise, W tosses a coin β with a bias δ (i.e, Pr[β = 0]=δ). The value of δ will be
quantified on analysis.

(iii) If β = 0, W selects c, s, r ∈R Zp and sets d := s`, R := (gα)r, A := gs(gα)−rd.
Next, it adds 〈id, (gα)r, c, r, 0〉 to LH (deferred case H3), 〈m,A, c, d, `〉 to LG

(deferred case G2) and increments ` by one.23 The signature returned is σ :=
(s+ zcid,R,A).

(iv) Otherwise, β = 1 and W selects a, r ∈R Zp and sets A := ga, R := gr. It
then queries the respective oracles with c := H(id, R) and d := G(m,A, c). The
signature returned is σ := (a+ (r + zc)d,R,A).

At the end of the simulation, a successful adversary outputs a valid forgery σ̂ := (b̂, R̂, Â)
on a (îd, m̂). Let 〈idj , Rj , cj , rj , βj〉 be the tuple in LH that corresponds to the target H-
query. Similarly, let 〈mi, Ai, ci, di, `i〉 be the tuple in LG that corresponds to the target G-
query. W returns (`i, (b̂, cj , rj , βj , di)) as its own output. Note that the side-output σ consists

of (b̂, cj , rj , βj , di). That concludes the description of the wrapper.

Correctness of the discrete-log. In the event of successful forking, R′1 obtains two (related)
sets of side-outputs σ0 and σ1, where σi (for i = 1, 2) is of the form (b̂i, ci, ri, βi, di). Due
to dependency, the adversary is forced to follow the order H < G. As a result, β0 = β1
(denoted by β), c0 = c1 (denoted by c) and r0 = r1 (denoted by r). In addition, let â denote
logg Â1 = logg Â0. W aborts in the event that β = 1 (abort1,3). In the case β = 0, R′1 ends up

with a system of two congruences {b̂0 = â+ (rα+ zc)d0, b̂1 = â+ (rα+ zc)d1} in two unknowns
{â, α}. α can be solved for as shown below.

α =
(b̂0 − b̂1)− zc(d0 − d1)

r(d0 − d1)
(17)

Notice that (17) is precisely what R′1 outputs in Algorithm 3.

B.1 Analysis

The probability analysis is governed by the three events abort1,1, abort1,2 and abort1,3. The
accepting probability of W is the same as for R1 and, as a result, so is the probability of
abort1,2. The probability of event abort1,3, on the other hand, is the same as that with which
(β = 1), i.e. Pr

[
abort1,3 | ¬abort1,2

]
= (1− δ). On putting it all together, we get

ε′1 = Pr
[
¬abort1,3 ∧ ¬abort1,2

]
≥ (1− (1− δ)) · (1− δ)qεε ·

(
(1− δ)qεε

qG

− 1

p

)
= δ · (1− δ)qεε ·

(
(1− δ)qεε

qG

− 1

p

)
(18)

Assuming p� 1, (18) attains maximum value at the point δ = 1/(1 + 2qε), at which

ε′1 ≥
ε2

2 exp(1)qGqε
.

Here, exp is the base of natural logarithm.

23W chooses different randomisers if there is a collision as explained in Footnote 22.
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