The PCP Theorem or How to Catch a Cheat, Efficiently

Chethan Kamath

IST Austria

May 29, 2015

Blackhat (the cheat) and Cueball*

^{*}Adaptation of Miniature 11 by Matoušek. Cast: xkcd.com

$$\begin{bmatrix} \cos 90^\circ & \sin 90^\circ \\ -\sin 90^\circ & \cos 90^\circ \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \underbrace{ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array}$$

$$\begin{bmatrix} \cos 90^\circ & \sin 90^\circ \\ -\sin 90^\circ & \cos 90^\circ \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \underbrace{ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \end{array}$$

Cueball: compute AB for matrices A and B

$$\begin{bmatrix} \cos 90^\circ & \sin 90^\circ \\ -\sin 90^\circ & \cos 90^\circ \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \underbrace{ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \end{array}$$

- Cueball: compute AB for matrices A and B
- If **A** and **B** are $10^4 \times 10^4$
 - Naïve algorithm: $\approx 10^{12}$ steps

$$\begin{bmatrix} \cos 90^\circ & \sin 90^\circ \\ -\sin 90^\circ & \cos 90^\circ \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \underbrace{ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \end{array}$$

- Cueball: compute AB for matrices A and B
- If **A** and **B** are $10^4 \times 10^4$
 - Naïve algorithm: $\approx 10^{12}$ steps
 - Best known algorithm: $\gg 2 \times 10^{12}$ steps!

$$\begin{bmatrix} \cos 90^\circ & \sin 90^\circ \\ -\sin 90^\circ & \cos 90^\circ \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \underbrace{ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \end{array}$$

- Cueball: compute AB for matrices A and B
- If **A** and **B** are $10^4 \times 10^4$
 - Naïve algorithm: $\approx 10^{12}$ steps
 - Best known algorithm: $\gg 2 \times 10^{12}$ steps!
 - Takes Cueball \approx 15 minutes on his Mac

▶ Blackhat: I can do it in 1 minute for 10€

▶ Blackhat: I can do it in 1 minute for 10€

▶ Blackhat: I can do it in 1 minute for 10€

- ► Blackhat: I can do it in 1 minute for 10€
- Can Cueball verify that C is the correct answer?
 - ► Naïve way: compute **AB** on his Mac and *compare* to **C**
 - Defeats the purpose: it takes 15 minutes

- ► Blackhat: I can do it in 1 minute for 10€
- Can Cueball verify that C is the correct answer?
 - ► Naïve way: compute **AB** on his Mac and *compare* to **C**
 - Defeats the purpose: it takes 15 minutes
- Can Cueball verify efficiently (say < 1 minute)?</p>

Solution: Randomness^{\dagger}

▶ Takes < 1 second on his Mac!

► Takes < 1 second on his Mac!

▶ Fact: If $C \neq AB$ then $A(Br) \neq Cr$ with probability $\geq 1/2$

- ► Takes < 1 second on his Mac!
- ▶ Fact: If $C \neq AB$ then $A(Br) \neq Cr$ with probability $\geq 1/2$
- Repeat with $\mathbf{r}_1, \ldots, \mathbf{r}_q$ for more confidence

Generalisation: PCP Theorem[‡]

 \blacktriangleright Substitute matrix multiplication \rightarrow any effectively solvable computational problem

Generalisation: PCP Theorem[‡]

- \blacktriangleright Substitute matrix multiplication \rightarrow any effectively solvable computational problem
- Probablistically checkable proofs (PCP)
- PCP Theorem: solution to any effectively solvable problem, can be verified randomly in a relatively short time
 - $\blacktriangleright \mathsf{NP} = \mathsf{PCP}[\mathsf{log}, 1]$

[‡]Arora and Safra, 1998

Generalisation: PCP Theorem[‡]

- \blacktriangleright Substitute matrix multiplication \rightarrow any effectively solvable computational problem
- Probablistically checkable proofs (PCP)
- PCP Theorem: solution to any effectively solvable problem, can be verified randomly in a relatively short time
 - $\blacktriangleright \mathsf{NP} = \mathsf{PCP}[\mathsf{log}, 1]$
- Intuition: verify random parts of the solution

[‡]Arora and Safra, 1998

Moral of the Story

Randomness is a powerful resource

Verify computation

Moral of the Story

Randomness is a powerful resource

- Verify computation
- Cryptography

Moral of the Story

Randomness is a powerful resource

- Verify computation
- Cryptography
- Don't trust people wearing hats!

Thank you!