The PCP Theorem or
 How to Catch a Cheat, Efficiently

Chethan Kamath

IST Austria
May 29, 2015
$+8$

Motivation: Modelling Homework

$$
\left[\begin{array}{l}
\cos 90^{\circ} \sin 90^{\circ} \\
-\sin 90^{\circ} \cos 90^{\circ}
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=0
$$

Motivation: Modelling Homework

$$
\left[\begin{array}{l}
\cos 90^{\circ} \sin 90^{\circ} \\
-\sin 90^{\circ} \cos 90^{\circ}
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=0
$$

- Cueball: compute $\mathbf{A B}$ for matrices \mathbf{A} and \mathbf{B}

Motivation: Modelling Homework

$$
\left[\begin{array}{l}
\cos 90^{\circ} \sin 90^{\circ} \\
-\sin 90^{\circ} \cos 90^{\circ}
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=0
$$

- Cueball: compute $\mathbf{A B}$ for matrices \mathbf{A} and \mathbf{B}
- If \mathbf{A} and \mathbf{B} are $10^{4} \times 10^{4}$
- Naïve algorithm: $\approx 10^{12}$ steps

Motivation: Modelling Homework

$$
\left[\begin{array}{l}
\cos 90^{\circ} \sin 90^{\circ} \\
-\sin 90^{\circ} \cos 90^{\circ}
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=0
$$

- Cueball: compute $\mathbf{A B}$ for matrices \mathbf{A} and \mathbf{B}
- If \mathbf{A} and \mathbf{B} are $10^{4} \times 10^{4}$
- Naïve algorithm: $\approx 10^{12}$ steps
- Best known algorithm: $\gg 2 \times 10^{12}$ steps!

Motivation: Modelling Homework

$$
\left[\begin{array}{l}
\cos 90^{\circ} \sin 90^{\circ} \\
-\sin 90^{\circ} \cos 90^{\circ}
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=0
$$

- Cueball: compute $\mathbf{A B}$ for matrices \mathbf{A} and \mathbf{B}
- If \mathbf{A} and \mathbf{B} are $10^{4} \times 10^{4}$
- Naïve algorithm: $\approx 10^{12}$ steps
- Best known algorithm: $\gg 2 \times 10^{12}$ steps!
- Takes Cueball ≈ 15 minutes on his Mac

Blackhat: I can do it faster!

- Blackhat: I can do it in 1 minute for $10 €$

Blackhat: I can do it faster!

- Blackhat: I can do it in 1 minute for $10 €$

Blackhat: I can do it faster!

- Blackhat: I can do it in 1 minute for $10 €$

Blackhat: I can do it faster!

- Blackhat: I can do it in 1 minute for $10 €$
- Can Cueball verify that \mathbf{C} is the correct answer?
- Naïve way: compute $\mathbf{A B}$ on his Mac and compare to \mathbf{C}
- Defeats the purpose: it takes 15 minutes

Blackhat: I can do it faster!

- Blackhat: I can do it in 1 minute for $10 €$
- Can Cueball verify that \mathbf{C} is the correct answer?
- Naïve way: compute $\mathbf{A B}$ on his Mac and compare to \mathbf{C}
- Defeats the purpose: it takes 15 minutes
- Can Cueball verify efficiently (say <1 minute)?

Solution: Randomness ${ }^{\dagger}$

Solution: Randomness ${ }^{\dagger}$

pick random \mathbf{r}

$$
\mathrm{A}(\mathrm{Br}) \stackrel{?}{=} \mathrm{Cr}
$$

Solution: Randomness ${ }^{\dagger}$

pick random r

$$
\mathrm{A}(\mathrm{Br}) \stackrel{?}{=} \mathrm{Cr}
$$

- Takes <1 second on his Mac!

Solution: Randomness ${ }^{\dagger}$

pick random \mathbf{r}

$$
\mathrm{A}(\mathrm{Br}) \stackrel{?}{=} \mathrm{Cr}
$$

- Takes <1 second on his Mac!
- Fact: If $\mathbf{C} \neq \mathbf{A B}$ then $\mathbf{A}(\mathbf{B r}) \neq \mathbf{C r}$ with probability $\geq 1 / 2$

Solution: Randomness ${ }^{\dagger}$

pick random \mathbf{r}

$$
\mathrm{A}(\mathrm{Br}) \stackrel{?}{=} \mathrm{Cr}
$$

- Takes <1 second on his Mac!
- Fact: If $\mathbf{C} \neq \mathbf{A B}$ then $\mathbf{A}(\mathbf{B r}) \neq \mathbf{C r}$ with probability $\geq 1 / 2$
- Repeat with $\mathbf{r}_{1}, \ldots, \mathbf{r}_{q}$ for more confidence

Generalisation: PCP Theorem ${ }^{\ddagger}$

- Substitute matrix multiplication \rightarrow any effectively solvable computational problem

Generalisation: PCP Theorem ${ }^{\ddagger}$

- Substitute matrix multiplication \rightarrow any effectively solvable computational problem
- Probablistically checkable proofs (PCP)
- PCP Theorem: solution to any effectively solvable problem, can be verified randomly in a relatively short time
- NP $=\mathrm{PCP}[\log , 1]$

Generalisation: PCP Theorem ${ }^{\ddagger}$

- Substitute matrix multiplication \rightarrow any effectively solvable computational problem
- Probablistically checkable proofs (PCP)
- PCP Theorem: solution to any effectively solvable problem, can be verified randomly in a relatively short time
- NP $=\mathrm{PCP}[\log , 1]$
- Intuition: verify random parts of the solution

[^0]
Moral of the Story

- Randomness is a powerful resource
- Verify computation

Moral of the Story

- Randomness is a powerful resource
- Verify computation
- Cryptography

Moral of the Story

- Randomness is a powerful resource
- Verify computation
- Cryptography
- Don't trust people wearing hats!

Thank you!

[^0]: ${ }^{\ddagger}$ Arora and Safra, 1998

